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Preface
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License

AUTO is available under the terms of the BSD license:

Copyright c© 1979–2007, E. J. Doedel, California Institute of Technology, and Concordia University. All rights
reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer listed in this license in the documentation and/or other materials provided with the
distribution.

• Neither the name of the copyright holders nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-

RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

OF THE POSSIBILITY OF SUCH DAMAGE.
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Chapter 1

Installing AUTO.

1.1 Installation.

The AUTO file auto07p-0.4.tar.gz is available via http://indy.cs.concordia.ca/auto. Below
it is assumed that you are using the Unix (e.g. bash) shell and that the file auto07p-0.4.tar.gz is
in your main directory.

While in your main directory, enter the commands gunzip auto07p-0.4.tar.gz, followed
by tar xvfo auto07p-0.4.tar. This will result in a directory auto, with one subdirectory,
auto/07p. Type cd auto/07p to change directory to auto/07p. Then type ./configure , to
check your system for required compilers and libraries. Once the configure script has finished
you may then type make to compile AUTO and its ancillary software. The configure script is
designed to detect the details of your system which AUTO requires to compile successfully. If
either the configure script or the make command should fail, you may assist the configure script
by giving it various command line options. Please type ./configure --help for more details.
Upon compilation, you may type make clean to remove unnecessary files.

To run AUTO you need to set your environment variables correctly. Assuming AUTO is
installed in your home directory, the following commands set your environment variables so
that you will be able to run the AUTO commands, and may be placed into your .login, .pro-
file, or .cshrc file, as appropriate. If you are using a sh compatible shell, such as sh, bash,
ksh, or ash enter the command source $HOME/auto/07p/cmds/auto.env.sh. On the other
hand, if you are using a csh compatible shell, such as csh or tcsh, enter the command
source $HOME/auto/07p/cmds/auto.env.

The Graphical User Interface (GUI) requires the X-Window system and Motif or LessTif.
Note that the GUI is not strictly necessary, since AUTO can be run very effectively using the
Unix Command Language User Interface (CLUI). Moreover, long or complicated sequences of
AUTO calculations can be programmed using the alternative Python CLUI. THe GUI is not
compiled by default. To compile AUTO with the GUI, type ./configure --enable-gui and
then make in the directory auto/07p.

The new graphic tool for AUTO data visualization, PLAUT04, is compiled by default, but
depends on a few libraries that may not be in a standard installation of a typical Unix-like
system. These libraries may be available as optional packages, though. Specifically, PLAUT04
requires at least either SGI Open Inventor 2.5.10 or Coin3D 2.2 with SoXt 1.1.0. It also needs
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the libraries simage 1.6 and (Open)Motif or LessTif 2.0. Any higher version numbers should also
work. One can download SGI’s implementation of the Open Inventor libraries from: ftp://

oss.sgi.com/projects/inventor/download/ Because SGI’s implementation for Linux cannot
show text correctly, we recommend that Coin is used instead of SGI’s implementation. Coin3D
can be downloaded from: http://www.coin3d.org/download/ It is also available as a package
for many Linux distributions. You will probably need to compile and install the SoXt and
simage libraries from the source code available at the above web site. If, after that, PLAUT04
still does not work then you might need to adjust the environment variable LD LIBRARY PATH

to include the location of these libraries, for instance /usr/local/lib.
The configure script checks for these libraries and outputs a warning if any of these li-

braries cannot be found; if they are not available you can still compile all other components of
AUTO using make.

For timing purposes, the file auto/07p/src/autlib1.f contains references to the function etime.
Similarly, this file contains references to the subroutine FLUSH to avoid buffering of screen
output when running AUTO from Python. These routines are not part of any Fortran standard
but are common extensions. The configure script checks if your compiler supplies them. If they
are not supplied then the dummy replacement routines in src/compat.f are used.

The PostScript conversion command @ps is compiled by default. Alternatively you can
type make in the directory auto/07p/tek2ps. To generate the on-line manual, type make in
auto/07p/doc.

To prepare AUTO for transfer to another machine, type make superclean in the directory
auto/07p before creating the tar-file. This will remove all executable, object, and other non-
essential files, and thereby reduce the size of the package.

Some EISPACK routines used by AUTO for computing eigenvalues and Floquet multipliers
are included in the package (Smith, Boyle, Dongarra, Garbow, Ikebe, Klema & Moler (1976)).

1.1.1 Installation on Mac OS X

AUTO runs on Mac OS X using the above instructions provided that you have the development
tools installed. You do not need to start an X server to run AUTO. To be able to plot in the
Python CLUI, AUTO uses pythonw instead of python. This should happen automatically.

The old plotting tool PLAUT may not display fonts. To solve this issue you would need
to obtain a different version of xterm; see http://iparrizar.mnstate.edu/∼juan/urania/

2007/07/19/xterm-tektronix-emulation-broken-on-macos or http://sourceforge.net/

project/showfiles.php?group id=21781. Apple is aware of this problem.

1.1.2 Installation on Windows

A native, light-weight solution for running AUTO on Windows is to use GFortran, MSYS
(see http://www.mingw.org), combined with a native Win32 version of Python, obtained at
http://www.python.org. To install this setup:

• Install Python from http://www.python.org.

• Install the minimal Unix-like environment MSYS from http://www.mingw.org. You do
not need to install MinGW itself.
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• Install GFortran from http://gcc.gnu.org/wiki/GFortran.

• Open a CMD.EXE window (click Start, Run, type cmd in the input box and press the
Enter key), and run sh in the MSYS directory, for instance, using c:\msys\1.0\bin\sh
−−login −i (the Python CLUI does not work in the default MSYS shell environment
accessed by its desktop icon).

• The sh command put you in a home directory, where you can unpack AUTO using gunzip
and tar, as described above.

• Make sure that the gfortran and python binaries are in your PATH, and that their direc-
tories are at the front of it. You can do this, for instance, using the shell command export

PATH="/c/Python24:/c/Program Files/gfortran/bin:$PATH" . You can also inspect,
edit and then source the file auto/07p/cmds/auto.env.sh to achieve this.

• Now you should be able to run configure, make, and run AUTO as shown above.

Alternatively, AUTO runs on Windows as above using the Unix-like environment Cygwin
(see http://www.cygwin.com). You should have at least the default installation, gcc, gfortran,
make, and python installed. The 2D-plot command is not as reponsive in Cygwin Python as in
the above native setup, however.

In both cases, an X server is not necessary, unless you wish to try to run PLAUT, PLAUT04,
or the GUI.

1.2 Restrictions on Problem Size.

There are size restrictions in the file auto/07p/include/auto.h on the following AUTO-constants :
the effective number of equation parameters NPAR, and the number of stored branch points NBIF
for algebraic problems, See Chapter 10 for the significance these constants. Their maxima are
denoted by the corresponding constant followed by anX. For example, NPARX in auto.h denotes
the maximum value of NPAR. If any of these maxima is exceeded in an AUTO-run then a message
will be printed. The exception is the the maximum value of NPAR, which, if exceeded, may lead
to unreported errors. Upon installation NPARX=36; it should never be decreased below that
value; see also Section 11.1. Size restrictions can be changed by editing auto.h. This must be
followed by recompilation by typing make in directory auto/07p/src.

Note that in certain cases the effective dimension may be greater than the user dimension.
For example, for the continuation of folds, the effective dimension is 2NDIM+1 for algebraic equa-
tions, and 2NDIM for ordinary differential equations, respectively. Similarly, for the continuation
of Hopf bifurcations, the effective dimension is 3NDIM+2.

1.3 Compatibility with Earlier Versions.

Unlike earlier versions, AUTO can no longer be compiled using a pure Fortran 77 compiler, but
you need at least a Fortran 90 compiler. A free Fortran 95 compiler, GFortran, is shipped with
most recent Linux distributions, or can be obtained at http://gcc.gnu.org/wiki/GFortran,

13



which contains binaries for Linux, Mac OS X and Windows. AUTO was also tested with the
free compiler g95, and there exist various, untested, commercial Fortran 9x compilers as well.

The AUTO input files are now called c.xxx (the constants file), and h.xxx (the HomCont
constants file, only used with HomCont); the output files are called b.xxx (the bifurcation-
diagram-file), s.xxx (the solution-file), and d.xxx (the diagnostics-file). There are also minor
changes in the formatting of these files compared to recent versions of AUTO, such as AUTO97
and AUTO2000. The main change compared to AUTO97 is that there is now a programmable
Python CLUI.

When upgrading from AUTO2000, you can continue to use equations-files written in C.
However, there is now a strict difference between indexing of the array par[] in the C file
and the references to it using PAR() in constants files and output, using par[i]=PAR(I+1). In
practise this means that you do not have to change the C file, but need to add 1 to all parameter
indices in the constant files, namely ICP(I), THL(I), and UZR(I). For example, the period is
referenced by par[10] in the C file, but by PAR(11) in the constants file. Equation files written
in C are used in the homoclinic branch switching demo in Chapter 27.

1.4 Parallel Version.

AUTO contains code which allows it to run in on parallel computers. Namely, it can use either
OpenMP to run most of its code in parallel on shared-memory multi-processors, or the MPI
message passing library. When the configure script is run it will try to detect if the Fortran
compiler supports OpenMP; examples are Gfortran 4.2 and the Intel Fortran Compiler. If it
is successful the necessary compiler flags are used to enable OpenMP in AUTO . To force the
configure script not to use OpenMP, one may type ./configure --without-openmp, and then
type make. On the other hand, unless there is some particular difficulty, we recommend that
that the configure script be used without arguments, since the parallel version of AUTO may
easily be controlled, and even run in a serial mode, through the use of the environment variable
OMP NUM THREADS.

For example, to run the AUTO executable auto.exe in serial mode you just type export

OMP NUM THREADS=1. To run the same command in parallel on 4 processors you type export

OMP NUM THREADS=4. Without any OMP NUM THREADS set the number of processors that AUTO will
use can be equal to the actual number of processors on the system, or can be equal to one; this
is system-dependent.

The MPI message passing library is not used by default. You can enable it by typing
./configure --with-mpi . If OpenMP and MPI are both used then AUTO uses mixed mode,
with MPI parallelisation occurring at the top level.

Running the MPI version is somewhat more complex because of the fact that MPI normally
uses some external program for starting the computational processes. The exact name and
command line options of this external program depends on your MPI installation. A common
name for this MPI external program is mpirun, and a common command line option which
defines the number of computational processes is -np. Accordingly, if you wanted to run the
MPI version of AUTO on four processors, with the above external program, you would type
mpirun -np 4 file.exe. Please see your local MPI documentation for more detail.
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Chapter 2

Overview of Capabilities.

2.1 Summary.

AUTO can do a limited bifurcation analysis of algebraic systems

f(u, p) = 0, f(·, ·), u ∈ Rn. (2.1)

The main algorithms in AUTO, however, are aimed at the continuation of solutions of systems
of ordinary differential equation (ODEs) of the form

u′(t) = f
(

u(t), p
)

, f(·, ·), u(·) ∈ Rn, (2.2)

subject to boundary (including initial) conditions and integral constraints. Above, p denotes
one or more free parameters,

These boundary value algorithms also allow AUTO to do certain stationary solution and
wave calculations for the partial differential equation (PDE)

ut = Duxx + f(u, p), f(·, ·), u(·) ∈ Rn, (2.3)

where D denotes a diagonal matrix of diffusion constants.
The basic algorithms used in AUTO, as well as related algorithms, can be found in Keller

(1977), Keller (1986), Doedel, Keller & Kernévez (1991a), Doedel, Keller & Kernévez (1991b).
Below, the basic capabilities of AUTO are specified in more detail. Some representative

demos are also indicated.

2.2 Algebraic Systems.

Specifically, for (2.1) AUTO can :

- Compute solution families.
(Demo ab; Run 1.)

- Locate branch points, continue these in two parameters, and automatically compute bi-
furcating families.
(Demos pp2; Run 1 and apnf.)
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- Locate Hopf bifurcation points and continue these in two parameters.
(Demo ab; Runs 1 and 5.)

- Locate folds (limit points) and continue these in two parameters.
(Demo ab; Runs 1,3,4.)

- Do each of the above for fixed points of the discrete dynamical system u(k+1) = f(u(k), p)
(Demo dd2.)

- Find extrema of an objective function along solution families and successively continue
such extrema in more parameters.
(Demo opt.)

2.3 Ordinary Differential Equations.

For the ODE (2.2) the program can :

- Compute families of stable and unstable periodic solutions and compute the Floquet mul-
tipliers, that determine stability, along these families. Starting data for the computation
of periodic orbits are generated automatically at Hopf bifurcation points.
(Demo ab; Run 2.)

- Locate folds, branch points, period doubling bifurcations, and bifurcations to tori, along
families of periodic solutions. Branch switching is possible at branch points and at period
doubling bifurcations.
(Demos tor, lor.)

- Continue folds and period-doubling bifurcations, in two parameters.
(Demos plp, pp3.) The continuation of orbits of fixed period is also possible. This is the
simplest way to compute curves of homoclinic orbits, if the period is sufficiently large.
(Demo pp2.)

- Do each of the above for rotations, i.e., when some of the solution components are periodic
modulo a phase gain of a multiple of 2π.
(Demo pen.)

- Follow curves of homoclinic orbits and detect and continue various codimension-2 bifur-
cations, using the HomCont algorithms of Champneys & Kuznetsov (1994), Champneys,
Kuznetsov & Sandstede (1996).
(Demos san, mnt, kpr, cir, she, rev.)

- Locate extrema of an integral objective functional along a family of periodic solutions and
successively continue such extrema in more parameters.
(Demo ops.)
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- Compute curves of solutions to (2.2) on [0, 1], subject to general nonlinear boundary and
integral conditions. The boundary conditions need not be separated, i.e., they may involve
both u(0) and u(1) simultaneously. The side conditions may also depend on parameters.
The number of boundary conditions plus the number of integral conditions need not equal
the dimension of the ODE, provided there is a corresponding number of additional param-
eter variables.
(Demos exp, int.)

- Determine folds and branch points along solution families to the above boundary value
problem. Branch switching is possible at branch points. Curves of folds can be computed
in two parameters.
(Demos bvp, int.)

2.4 Parabolic PDEs.

For (2.3) the program can :

- Trace out families of spatially homogeneous solutions. This amounts to a bifurcation
analysis of the algebraic system (2.1). However, AUTO uses a related system instead, in
order to enable the detection of bifurcations to wave train solutions of given wave speed.
More precisely, bifurcations to wave trains are detected as Hopf bifurcations along fixed
point families of the related ODE

u′(z) = v(z),
v′(z) = −D−1

[

c v(z) + f
(

u(z), p
)]

,
(2.4)

where z = x− ct , with the wave speed c specified by the user.
(Demo wav; Run 2.)

- Trace out families of periodic wave solutions to (2.3) that emanate from a Hopf bifurcation
point of Equation 2.4. The wave speed c is fixed along such a family, but the wave length
L, i.e., the period of periodic solutions to (2.4), will normally vary. If the wave length
L becomes large, i.e., if a homoclinic orbit of Equation 2.4 is approached, then the wave
tends to a solitary wave solution of (2.3).
(Demo wav; Run 3.)

- Trace out families of waves of fixed wave length L in two parameters. The wave speed c
may be chosen as one of these parameters. If L is large then such a continuation gives a
family of approximate solitary wave solutions to (2.3).
(Demo wav; Run 4.)

- Do time evolution calculations for (2.3), given periodic initial data on the interval [0, L].
The initial data must be specified on [0, 1] and L must be set separately because of internal
scaling. The initial data may be given analytically or obtained from a previous computa-
tion of wave trains, solitary waves, or from a previous evolution calculation. Conversely, if
an evolution calculation results in a stationary wave then this wave can be used as starting
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data for a wave continuation calculation.
(Demo wav; Run 5.)

- Do time evolution calculations for (2.3) subject to user-specified boundary conditions. As
above, the initial data must be specified on [0, 1] and the space interval length L must
be specified separately. Time evolution computations of (2.3) are adaptive in space and
in time. Discretization in time is not very accurate : only implicit Euler. Indeed, time
integration of (2.3) has only been included as a convenience and it is not very efficient.
(Demos pd1, pd2.)

- Compute curves of stationary solutions to (2.3) subject to user-specified boundary con-
ditions. The initial data may be given analytically, obtained from a previous stationary
solution computation, or from a time evolution calculation.
(Demos pd1, pd2.)

In connection with periodic waves, note that (2.4) is just a special case of (2.2) and that its
fixed point analysis is a special case of (2.1). One advantage of the built-in capacity of AUTO
to deal with problem (2.3) is that the user need only specify f , D, and c. Another advantage
is the compatibility of output data for restart purposes. This allows switching back and forth
between evolution calculations and wave computations.

2.5 Discretization.

AUTO discretizes ODE boundary value problems (which includes periodic solutions) by the
method of orthogonal collocation using piecewise polynomials with 2-7 collocation points per
mesh interval (de Boor & Swartz (1973)). The mesh automatically adapts to the solution to
equidistribute the local discretization error (Russell & Christiansen (1978)). The number of
mesh intervals and the number of collocation points remain constant during any given run,
although they may be changed at restart points. The implementation is AUTO-specific. In
particular, the choice of local polynomial basis and the algorithm for solving the linearized
collocation systems were specifically designed for use in numerical bifurcation analysis.
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Chapter 3

User-Supplied Files.

The user must prepare the two files described below. This can be done with the GUI described
in Chapter 9, or independently.

3.1 The Equations-File xxx.f90, or xxx.f, or xxx.c

A source file xxx.f90 containing the Fortran routines FUNC, STPNT, BCND, ICND, FOPT, and
PVLS. Here xxx stands for a user-selected name. If any of these routines is irrelevant to the
problem then its body need not be completed. Examples are in auto/07p/demos, where, e.g.,
the file ab/ab.f defines a two-dimensional dynamical system, and the file exp/exp.f defines a
boundary value problem. The simplest way to create a new equations-file is to copy an appro-
priate demo file. For a fully documented equations-file see auto/07p/demos/cusp/cusp.f90

or auto/07p/gui/aut.f. In GUI mode, this file can be directly loaded with the GUI-button
Equations/New; see Section 9.2.

The equations-file can either be written in fixed-form (old-style) Fortran (.f), free-form For-
tran (.f90) or in C (.c).

3.2 The Constants-File c.xxx

AUTO-constants for xxx.{f,f90,c} are normally expected in a corresponding file c.xxx. Spe-
cific examples include ab/c.ab and exp/c.exp in auto/07p/demos. See Chapter 10 for the
significance of each constant.
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3.3 User-Supplied Routines.

The purpose of each of the user-supplied routines in the file xxx.f90,f is described below.

- FUNC : defines the function f(u, p) in (2.1), (2.2), or (2.3).

- STPNT : This routine is called only if IRS=0 (see Section 10.8.5 for IRS), which typically is
the case for the first run. It defines a starting solution (u, p) of (2.1) or (2.2). The starting
solution should not be a branch point.
(Demos ab, exp, frc, lor.)

- BCND : A routine BCND that defines the boundary conditions.
(Demo exp, kar.)

- ICND : A routine ICND that defines the integral conditions.
(Demos int, lin.)

- FOPT : A routine FOPT that defines the objective functional.
(Demos opt, ops.)

- PVLS : A routine PVLS for defining “solution measures”.
(Demo pvl.)

In a C language equation file, these routines are written using lowercase letters; with Fortran
you can use any case.

3.4 User-Supplied Derivatives.

If AUTO-constant JAC equals 0 then derivatives need not be specified in FUNC, BCND, ICND, and
FOPT; see Section sec:JAC. If JAC=1 then derivatives must be given. This may be necessary
for sensitive problems, and is recommended for computations in which AUTO generates an
extended system. Examples of user-supplied derivatives can be found in demos dd2, int, plp,
opt, and ops.
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Chapter 4

Running AUTO using Python
Commands.

4.1 Typographical Conventions

This chapter uses the following conventions. All code examples will be in in the following font.

AUTO> copydemo("ab")

Copying demo ab ... done

To distinguish commands which are typed to the Unix shell from those which are typed to
the AUTO command line user interface (CLUI) we will use the following two prompts.

> Commands which follow this prompt are for the Unix shell.
AUTO> Commands which follow this prompt are for the AUTO CLUI.

4.2 General Overview.

The AUTO command line user interface (CLUI) is similar to the command language described
in Section 5 in that it facilitates the interactive creating and editing of equations-files and
constants-files. It differs from the other command language in that it is based on the object-
oriented scripting language Python (see Lutz (1996)) and provides extensive programming
capabilities. This chapter will provide documentation for the AUTO CLUI commands, but is
not intended as a tutorial for the Python language. We will attempt to make this chapter
self contained by describing all Python constructs that we use in the examples, but for more
extensive documentation on the Python language, including tutorials and pointers to further
documentation, please see Lutz (1996) or the web page http://www.python.org which contains
an excellent tutorial at http://www.python.org/doc/current/tut/tut.html.

To use the CLUI for a new equation, change to an empty directory. For an existing equations-
file, change to its directory. (Do not activate the CLUI in the directory auto/07p or in any of
its subdirectories.) Then type

auto.
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> auto

Initializing

Python 1.5.2 (1, Feb 1 2000, 16:32:16) [GCC egcs-2.91.66 19990314/Linux

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

(AUTOInteractiveConsole)

AUTO>

Figure 4.1: Typing auto at the Unix shell prompt starts the AUTO CLUI.

If your command search path has been correctly set (see Section 1.1), this command will
start the AUTO CLUI interactive interpretor and provide you with the AUTO CLUI prompt.

In addition to the examples in the following sections there are several example scripts which
can be found in auto/07p/demos/python and are listed in Table 4.1. These scripts are fully
annotated and provide good examples of how AUTO CLUI scripts are written. The scripts in
auto/07p/demos/python/n-body are especially lucid examples and preform various related parts
of a calculation involving the gravitional N-body problem. Scripts which end in the suffix .auto
are called “basic” scripts and can be run by typing auto scriptname.auto. The scripts show
in Section 4.3 and Section 4.5 are examples of basic scripts. Scripts which end in the suffix
.xauto are called “expert” scripts and can be run by typing autox scriptname.xauto. More
information on expert scripts can be found in Section 4.6. See the README file in that directory
for more information.

4.3 First Example

We begin with a simple example of the AUTO CLUI. In this example we copy the ab demo
from the AUTO installation directory and run it. For more information on the ab demo see
Section 12.8. The commands listed in Table 4.2 will copy the demo files to your work directory
and run the first part of the demo. The results of running these commands are shown in
Figure 4.2.

Let us examine more closely what action each of the commands performs. First, copydemo(’ab’)
(Section 4.14.7 in the reference) copies the files in $AUTO DIR/demo/ab into the work directory.

Next, load(equation=’ab’) (Section 4.14.34 in the reference) informs the AUTO CLUI
that the name of the user defined function file is ab.f. The command load is one of the most
commonly used commands in the AUTO CLUI, since it reads and parses the user files which
are manipulated by other commands. The AUTO CLUI stores this setting until it is changed
by a command, such as another load command. The idea of storing information is one of the
ideas that sets the CLUI apart from the command language described in Section 5.

Next, load(constants=’ab.1’) parses the AUTO constants file c.ab.1 and reads it into
memory. Note that changes to the file c.ab.1 after it has been loaded in will not be used by
AUTO unless it is loaded in again after the changes are made.

Finally, run() (Section 4.14.31 in the reference) uses the user defined functions loaded by the
load(equation=’ab’) command, and the AUTO constants loaded by the load(constants=’ab.1’)
to run AUTO .
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Script Description

demo1.auto The demo script from Section 4.3.

demo2.auto The demo script from Section 4.5.

userScript.xauto The expert demo script from Figure 4.12.

userScript.py
The loadable expert demo script from Fig-
ure 4.13.

fullTest.auto
A script which uses the entire AUTO com-
mand set, except for the plotting com-
mands.

plotter.auto
A demonstration of some of the plotting
capabilities of AUTO .

fullTest.auto
A script which implements the tutorial
from Section 12.8.

n-body/compute lagrange points family.auto
A basic script which computes and plots all
of the “Lagrange points” as a function of
the ratio of the masses of the two planets.

n-body/compute lagrange points 0.5.auto

A basic script which computes all of the
“Lagrange points” for the case where the
masses of the two planets are equal, and
saves the data.

n-body/compute periodic family.xauto

An expert script which starts at a
“Lagrange point” computed by com-
pute lagrange points 0.5.auto and contin-
ues in the ratio of the masses until a spec-
ified mass ratio is reached. It then com-
putes a family of periodic orbits for each
pair of purely complex eigenvalues.

n-body/to matlab.xauto

A script which takes a set of AUTO data
files and creates a set of files formatted for
importing into Matlab for either plotting
or further calculations.

Table 4.1: The various demonstration scripts for the AUTO CLUI.

Unix-COMMAND ACTION
auto start the AUTO CLUI

AUTO CLUI COMMAND ACTION
copydemo(’ab’) copy the demo files to the work directory
load(equation=’ab’) load the filename ab.f into memory
load(constants=’ab.1’) load the contents of the file c.ab.1 into memory
run() run AUTO with the current set of files

Table 4.2: Running the demo ab files.
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> auto

Python 2.3.5 (#2, Jun 13 2006, 23:12:55)

[GCC 4.1.2 20060613 (prerelease) (Debian 4.1.1-4)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

(AUTOInteractiveConsole)

AUTO> copydemo(’ab’)

Copying demo ab ... done

AUTO> load(equation=’ab’)

Runner configured

AUTO> load(constants=’ab’)

Runner configured

AUTO> run()

gfortran -O -c ab.f -o ab.o

gfortran -O ab.o -o ab.exe /home/enbeo/auto/07pp/lib/*.o

Starting ab ...

BR PT TY LAB PAR(2) L2-NORM U(1) U(2)

1 1 EP 1 8.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

1 31 UZ 2 1.40000E+01 0.00000E+00 0.00000E+00 0.00000E+00

1 36 UZ 3 1.50000E+01 0.00000E+00 0.00000E+00 0.00000E+00

1 41 UZ 4 1.60000E+01 0.00000E+00 0.00000E+00 0.00000E+00

1 46 UZ 5 1.70000E+01 0.00000E+00 0.00000E+00 0.00000E+00

1 51 EP 6 1.80000E+01 0.00000E+00 0.00000E+00 0.00000E+00

Total Time 0.240E-01

ab ... done

AUTO>

Figure 4.2: Typing auto at the Unix shell prompt starts the AUTO CLUI. The rest of the
commands are interpreted by the AUTO CLUI.
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Figure 4.2 showed two of the file types that the load command can read into memory,
namely the user defined function file and the AUTO constants file (Section 3). There are two
other files types that can be read in using the load command, and they are the restart solution
file (Section 6) and the HomCont parameter file (Section 20.2).

Note that the name given to the load command is not the same as the filename which is read
in, for example load(constants=’ab.1’) reads in the file c.ab.1. This difference is a result
of the automatic transformation of the filenames by the AUTO CLUI into the standard names
used by AUTO . The standard filename transformations are show in Table 4.3.

Long name Short name Name entered Transformed file name
equation e foo foo.c
constants c foo c.foo
solution s foo s.foo
bifurcationDiagram b foo b.foo
diagnostics d foo d.foo
homcont h foo h.foo

Table 4.3: This table shows the standard AUTO CLUI filename translations. In load and run
commands either the long name or the short name may be used for loading the appropriate files.

Since the load command is so common, there are various shorthand versions of it. First, there
are short versions of the various arguments as shown in Table 4.3. For example, the command
load(constants=’ab.1’) can be shortened to load(c=’ab.1’). Next, several different files
may be loaded at once using the same load command. For example, the two commands in
Figure 4.3 have the same effect as the single command in Figure 4.4.

AUTO> load(e=’ab’)

Runner configured

AUTO> load(c=’ab.1)

Runner configured

Figure 4.3: Loading two files individually.

AUTO> load(e=’ab’,c=’ab.1’)

Runner configured

Figure 4.4: Loading two files at the same time.

Also, since it is common that several files will be loaded that have the same base name
load(’ab’) performs the same action as load(e=’ab’,c=’ab’,s=’ab’,h=’ab’). Note, for the
command load(’ab’) it is only required that ab.f and c.ab exist; s.ab and h.ab are optional,
and if they do not exist, no error message will be given.
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4.4 Scripting

Section 4.3 showed commands being interactively entered at the AUTO CLUI prompt, but
since the AUTO CLUI is based on Python one has the ability to write scripts for performing
sequences of commands automatically. A Python script is very similar to the interactive mode
shown in Section 4.3 except that the commands are placed in a file and read all at once. For
example, if the commands from Figure 4.2 where placed into the file demo1.auto, in the format
shown in Figure 4.5, then the commands could be run all at once by typing auto demo1.auto.
See Figure 4.6 for the full output.

copydemo(’ab’)

load(equation=’ab’)

load(constants=’ab.1’)

run()

Figure 4.5: The commands from Figure 4.2 and they would appear in a AUTO CLUI script file.
The source for this script can be found in $AUTO DIR/demos/python/demo1.auto.

4.5 Second Example

In Section 4.3 we showed a very simple AUTO CLUI script, in this Section we will describe
a more complex example, which introduces several new AUTO CLUI commands as well as
some basic Python constructs for conditionals and looping. We will not provide an exhaustive
reference for the Python language, but only the very basics. For more extensive documentation
we refer the reader to Lutz (1996) or the web page http://www.python.org. In this section we
will describe each line of the script in detail, and the full text of the script is in Figure 4.7.

The script begins with a section, extracted into Figure 4.8, which performs a task identical
to that shown in Figure 4.2 except that the shorthand discussed in Section 4.3 is used for the
ld command.

The next section of the script, extracted into Figure 4.9, introduces three new AUTO CLUI
commands. First, sv(’bvp’) (Section 4.14.6 in the reference) saves the results of the AUTO run
into files using the base name bvp and the filename extensions in Table 4.3. For example, in
this case the bifurcation diagram file fort.7 will be saved as b.bvp, the solution file fort.8 will be
saved as s.bvp, and the diagnostics file fort.9 will be saved as d.bvp. Next, ld(s=’bvp’) loads
the solution file s.bvp into memory so that it can be used by AUTO for further calculations.

Up to this point all of the commands presented have had analogs in the command language
discussed in Section 5, and the AUTO CLUI has been designed in this way to make it easy
for users to migrate from the old command language to the AUTO CLUI. The next command,
namely data = sl(’bvp’) (Section 4.14.19 in the reference) is the first command which has no
analog in the old command language. The command sl(’bvp’) parses the file s.bvp and returns
a python object which encapsulates the information contained in the file and presents it to the
user in an easy to use format. Accordingly, the command data = sl(’bvp’) stores this easy
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> cat demo1.auto

copydemo(’ab’)

load(equation=’ab’)

load(constants=’ab.1’)

run()

> auto demo1.auto

Initializing

Copying demo ab ... done

Runner configured

Runner configured

gcc -O -DPTHREADS -O -I/home/amavisitors/redrod/src/auto/2000/include -c ab.c

gcc -O ab.o -o ab.exe /home/amavisitors/redrod/src/auto/2000/lib/*.o -lpthread

-L/home/amavisitors/redrod/src/auto/2000/lib -lauto_f2c -lm

Starting ab ...

1 1 EP 1 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00

1 33 LP 2 1.057390E-01 1.484391E+00 3.110230E-01 1.451441E+00

1 70 LP 3 8.893185E-02 3.288241E+00 6.889822E-01 3.215250E+00

1 90 HB 4 1.308998E-01 4.271867E+00 8.950803E-01 4.177042E+00

1 92 EP 5 1.512417E-01 4.369748E+00 9.155894E-01 4.272750E+00

Total Time 8.740E-02

ab ... done

>

Figure 4.6: This Figure starts by listing the contents of the demo1.auto file using the Unix cat

command. The file is then run through the AUTO CLUI by typing auto demo1.auto and the
output is shown.

to use representation of the object in the Python variable data. Note, variables in Python are
different from those in languages such as C in that their type does not have to be declared before
they are created. Finally, ch("NTST",50) (Section 4.14.32 in the reference) changes the NTST

value to 50 (see Section 10.2.1). To be precise, the command ch("NTST",50) only modifies the
“in memory” version of the AUTO constants created by the ld(’bvp’) command. The original
file c.bvp is not modified.

The next section of the script, extracted into Figure 4.10, shows as example of looping
and conditionals in an AUTO CLUI script. The first line for solution in data: is the
Python syntax for loops. The data variable was defined in Figure 4.9 to be the parsed version
of an AUTO fort.8 file, and accordingly contains a list of the solutions from the fort.8 file. The
command for solution in data: is used to loop over all solutions in the data variable by
setting the variable solution to be one of the solutions in data and then calling the rest of the
code in the block.

Python differs from most other computer languages in that blocks of code are not defined by
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copydemo(’bvp’)

ld(’bvp’)

run()

sv(’bvp’)

ld(s=’bvp’)

data = sl(’bvp’)

ch("NTST",50)

for solution in data:

if solution["Type name"] == "BP":

ch("IRS", solution["Label"])

ch("ISW", -1)

# Compute forward

run()

ap(’bvp’)

# Compute back

ch("DS",-pr("DS"))

run()

ap(’bvp’)

plot(’bvp’)

wait()

Figure 4.7: This Figure shows a more complex AUTO CLUI script. The source for this script
can be found in $AUTO DIR/demos/python/demo2.auto.

copydemo(’bvp’)

ld(’bvp’)

run()

Figure 4.8: The first part of the complex AUTO CLUI script.

sv(’bvp’)

ld(s=’bvp’)

data = sl(’bvp’)

ch("NTST",50)

Figure 4.9: The second part of the complex AUTO CLUI script.
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some delimiter, such as {} in C, but by indentation. In Figure 4.7 the commands plot(’bvp’)
and wait() are not part of the loop, because they are indented differently. This can be confusing
first time users of Python , but it has the advantage that the code is forced to have a consistent
indentation style.

The next command in the script, if solution["Type name"] == "BP": is a Python con-
ditional. It examines the contents of the variable solution (which is one of the entries in the
array of solutions data) and checks to see if the condition solution["Type name"] == "BP"

holds. For parsed fort.8 files Type name BP corresponds to a bifurcation point. Accordingly, the
function of this loop and conditional is to examine every solution in the fort.8 file and run the
following commands if the solution is a bifurcation point.

The next line is ch("IRS", solution["Label"]) which changes the “in memory” version
of the AUTO constants file to set IRS (see Section 10.8.5) equal to the label of the bifurcation
point. We then use ch("ISW", -1) to change the AUTO constant ISW to -1, which indicates a
branch switch (see Section 10.8.3).

We then use a run() command to perform the calculation of the bifurcating branch and
then append the data to the s.bvp, b.bvp, and d.bvp files with the ap(’bvp’) command (Sec-
tion 4.14.1 in the reference). In addition, as can be seen in Figure 4.10, the # character is the
Python comment character. When the Python interpretor encounters a # character it ignores
everything from that character to the end of the line.

Finally, we us ch("DS",-pr("DS")) to change the AUTO initial step size from positive
to negative, which allows us to compute the bifurcating branch in the other direction (see
Section 10.5.1). Running the AUTO calculation with the run() command and appending the
data the appropriate files with the ap(’bvp’) command completes the body of the loop.

for solution in data:

if solution["Type name"] == "BP":

ch("IRS", solution["Label"])

ch("ISW", -1)

# Compute forward

run()

ap(’bvp’)

# Compute back

ch("DS",-pr("DS"))

run()

ap(’bvp’)

Figure 4.10: The second part of the complex AUTO CLUI script.

Now that the section of script shown in Figure 4.10 has finished computing the bifurcation
diagram, the command plot(’bvp’) brings up a plotting window (Section 4.14.20 in the refer-
ence), and the command wait() causes the AUTO CLUI to wait for input. You may now exit
the AUTO CLUI by pressing any key in the window in which you started the AUTO CLUI.

For convenience, some of these commands have shorter forms. For instance, you can directly
specify a change of NTST in the ld and run commands, by giving NTST=xxx as an extra pa-
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rameter, as well as the special DS=’-’ notation to quickly revert the direction (the sign of DS).
The command run also accepts the files to save or append to using sv= and ap=, respectively.
Another helpful function is splabs, that return a list of labels for a given solution file. A shorter
version of the complex AUTO CLUI script is given in Figure 4.11.

copydemo(’bvp’)

#run bvp.f with c.bvp (first parameter), save in {b,s}.bvp (second parameter)

r(’bvp’,’bvp’)

ld(s=’bvp’,NTST=50)

for solution in splabs(’bvp’,’BP’):

# Compute forward

r(IRS=solution,ISW=-1,ap=’bvp’)

# Compute back

r(DS=’-’,ap=’bvp’)

pl(’bvp’)

wait()

Figure 4.11: This Figure shows a shorter version of the more complex AUTO CLUI script given
above. The source for this script can be found in $AUTO DIR/demos/python/demo3.auto.

4.6 Extending the AUTO CLUI

The code in Figure 4.7 performed a very useful and common procedure, it started an AUTO cal-
culation and performed additional continuations at every point which AUTO detected as a bi-
furcation. Unfortunately, the script as written can only be used for the bvp demo. In this section
we will generalize the script in Figure 4.7 for use with any demo, and demonstrate how it can
be imported back into the interactive mode to create a new command for the AUTO CLUI.
Several examples of such “expert” scripts can be found in auto/07p/demos/python/n-body.

Just as loops and conditionals can be used in Python , one can also define functions. For
example, Figure 4.12 is a functional version of script from Figure 4.7. The changes are ac-
tually quite minor. The first line, from AUTOclui import *, includes the definitions of the
AUTO CLUI commands, and must be included in all AUTO CLUI scripts which define func-
tions. The next line, def myRun(demo):, begins the function definition, and creates a function
named myRun which takes one argument demo. The rest of the script is the same except that it has
been indented to indicate that it is part of the function definition, and all occurrences of string
’bvp’ have been replaced with the variable demo. Finally we have added a line myRun(’bvp’)

which actually calls the function we have created and runs the same computation as the original
script.

While the script in Figure 4.12 is only slightly different then the one showed in Figure 4.7 it
is much more powerful. Not only can it be used as a script for running any demo by modifying
the last line, it can be read back into the interactive mode of the AUTO CLUI and used to create
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from AUTOclui import *

def myRun(demo):

copydemo(demo)

ld(demo)

run()

sv(demo)

ld(s=demo)

data = sl(demo)

ch("NTST",50)

for solution in data:

if solution["Type name"] == "BP":

ch("IRS", solution["Label"])

ch("ISW", -1)

# Compute forward

run()

ap(demo)

# Compute back

ch("DS",-pr("DS"))

run()

ap(demo)

plot(demo)

wait()

myRun(’bvp’)

Figure 4.12: This Figure shows a complex AUTO CLUI script written as a function. The source
for this script can be found in $AUTO DIR/demos/python/userScript.xauto.
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a new command, as in Figure 4.13. First, we create a file called userScript.py which contains
the script from Figure 4.12, with one minor modification. We want the function only to run
when we use it interactively, not when the file userScript.py is read in, so we remove the last
line where the function is called. We start the AUTO CLUI with the Unix command auto, and
once the AUTO CLUI is running we use the command from userScript import *, to import
the file userScript.py into the AUTO CLUI. The import command makes all functions in that
file available for our use (in this case myRun is the only one). It is important to note that from
userScript import * does not use the .py extension on the file name. After importing our
new function, we may use it just like any other function in the AUTO CLUI, for example by
typing myRun(’bvp’).

4.7 Bifurcation Diagram Files

Using the commandParseDiagramFile command (Section 4.14.18 in the reference) the user can
parse and read into memory an AUTO bifurcation diagram file. For example, the command
commandParseDiagramFile(’ab’) would parse the file b.ab (if you are using the standard file-
name translations from Table 4.3) and return an object which encapsulates the bifurcation
diagram in an easy to use form.

The object returned by the commandParseDiagramFile is a list of all of the solutions in the
appropriate bifurcation diagram file, and each solution is a Python dictionary with entries for
each piece of data for the solution. For example, the sequence of commands in Figure 4.14,
prints out the label of the first solution in a bifurcation diagram. The queriable parts of the
object are listed in Table 4.4.

The individual elements of the array may be accessed in two ways, either by index of the
solution using the [] syntax or by label number using the () syntax. For example, assume
that the parsed object is contained in a variable data. The first solution may be accessed using
the command data[0], while the solution with label 57 may be accessed using the command
data(57).

Query string Meaning
TY name The short name for the solution type (see Table 4.5).
TY number The number of the solution type (see Table 4.5).
BR The branch number.
PT The point number.
LAB The solution label, if any.
section A unique identifier for each branch in a file with multiple branches.
data An array which contains the AUTO output.

Table 4.4: This table shows the strings that can be used to query a bifurcation diagram object
and their meanings.
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> cp \$AUTO\_DIR/python/demo/userScript.py .

> ls

userScript.py

> cat userScript.py

# This is an example script for the AUTO07p command line user

# interface. See the "Command Line User Interface" chapter in the

# manual for more details.

from AUTOclui import *

def myRun(demo):

copydemo(demo)

ld(demo)

run()

sv(demo)

ld(s=demo)

data = sl(demo)

ch("NTST",50)

for solution in data:

if solution["Type name"] == "BP":

ch("IRS", solution["Label"])

ch("ISW", -1)

# Compute forward

run()

ap(demo)

# Compute back

ch("DS",-pr("DS"))

run()

ap(demo)

plot(demo)

wait()

> auto

Initializing

Python 1.5.2 (#1, Feb 1 2000, 16:32:16) [GCC egcs-2.91.66 19990314/Linux

(egcs- on linux-i386

Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

(AUTOInteractiveConsole)

AUTO> from userScript import *

AUTO> myRun(’bvp’)

...

Figure 4.13: This Figure shows the functional version of the AUTO CLUI from Figure 4.12
being used as an extension to the AUTO CLUI. The source code for this script can be found in
$AUTO DIR/python/demo/userScript.py
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AUTO> data=dg(’ab’)

Parsed file: b.ab

AUTO> print data[0]

{’LAB’: 6, ’TY name’: ’EP’, ’data’: [0.0, 0.0, 0.0, 0.0], ’section’: 12,

’BR’: 2, ’PT’: 1, ’TY number’: 9}

AUTO> print data[0][’LAB’]

6

AUTO>

Figure 4.14: This figure shows an example of parsing a bifurcation diagram. The first command,
data=dg(’ab’), reads in the bifurcation diagram and puts it into the variable data. The second
command, print data[0] prints out all of the data about the first solution in the list. The
third command, print data[0][’LAB’], prints out the label of the first point.

Type Short Name Number
No Label No Label
Branch point (algebraic problem) BP 1
Fold (algebraic problem) LP 2
Hopf bifurcation (algebraic problem) HB 3
Regular point (every NPR steps) RG 4
User requested point UZ -4
Fold (ODE) LP 5
Bifurcation point (ODE) BP 6
Period doubling bifurcation (ODE) PD 7
Bifurcation to invarient torus (ODE) TR 8
Normal begin or end EP 9
Abnormal termination MX -9

Table 4.5: This table shows the the various types of points that can be in solution and bifurcation
diagram files, with their short names and numbers.
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4.8 Solution Files

Using the commandParseSolutionFile command (Section 4.14.19 in the reference) the user can
parse and read into memory an AUTO bifurcation solution file. For example, the command
commandParseSolutionFile(’ab’) would parse the file b.ab (if you are using the standard
filename translations from Table 4.3) and return an object which encapsulates the bifurcation
solution in a easy to use form.

The object returned by the commandParseSolutionFile is a list of all of the solutions in
the appropriate bifurcation solution file, and each solution is a Python dictionary with entries
for each piece of data for the solution. For example, the sequence of commands in Figure 4.15,
prints out the label of the first solution in a bifurcation solution. The queriable parts of the
object are listed in Table 4.6.

AUTO> data=sl()

Parsed file: fort.8

AUTO> print data[0]

’Branch number’: 2

’ISW’: 1

’Label’: 6

’NCOL’: 0

’NTST’: 0

’Parameters’: [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]

’Point number’: 1

’Type name’: ’EP’

’Type number’: 9

’p’: [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]

’parameters’: [0.0, 14.0, 2.0, 0.0, 0.0, 0.0]

AUTO> print data[0][’Label’]

6

AUTO> data[0]["data"][0]

{’t’: 0.0, ’u’: [0.0, 0.0]}

Figure 4.15: This figure shows an example of parsing a bifurcation solution. The first command,
data=dg(’ab’), reads in the bifurcation solution and puts it into the variable data. The second
command, print data[0] prints out all of the data about the first solution in the list. The
third command, print data[0][’Label’], prints out the label of the first point. The last
command prints the value of the solution at the first point of the first solution.

The individual elements of the array may be accessed in two ways, either by the index of
the solution using the [] syntax or by label number using the () syntax. For example, sssume
that the parsed object is contained in a variable data. The first solution may be accessed using
the command data[0], while the solution with label 57 may be accessed using the command
data(57).
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Query string Meaning

data An array which contains the AUTO output.

Branch number
The number of the branch to which the solution belongs.

ISW
The ISW value used to start the calcluation. See Sec-
tion 10.8.3.

Label The label of the solution.

NCOL
The number of collocation points used to compute the
solution. See Section 10.3.2.

NTST
The number of mesh intervals used to compute the solu-
tion. See Section 10.3.1.

Parameters The value of all of the parameters for the solution.

Point number The number of the point in the given branch.

Type name
A short string which describes the type of the solution
(see Table 4.5).

Type number
A number which describes the type of the solution (see
Table 4.5).

p
The value of all of the parameters for the solution. (This
is an alias for ’Parameter’).

parameters
The value of all of the parameters for the solution. (This
is an alias for ’Parameter’).

Table 4.6: This table shows the strings that can be used to query a bifurcation solution object
and their meanings.
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4.9 Exporting output data for use by Python or external

visualization tools.

The bifurcation and solution file classes have two methods that are particularily useful for
creating data which can be used in other programs. First, there is a method called toArray

which takes a bifurcation diagram or solution and returns a standard Python array. Second,
there is a method called writeRawFilename which will create a standard ASCII file which
contains the bifurcation diagram or the solution. In the solution ASCII file, the first element of
each row will be the ’t’ value and the following elements will be the values of the components
at that ’t’ value. Such ASCII files can be readily parsed and plotted by external tools such as
Gnuplot and MATLAB.

For example, we assume that the parsed bifurcation diagram is contained in a variable b,
for instance, using b=dg(’ab’). If one wanted to have the bifurcation diagram returned as a
Python array one would type b.toArray(). Similarily, if one wanted to write out the bifurcation
diagram to the file outputfile one would type b.writeRawFilename(’outputfile’).

Now we assume that the parsed solution file is contained in a variable s, for example, using
s=sl(’ab’). To get the solution with label 57 returned as a Python array one would type
s(57).toArray(). Similarily, if one wanted to write out the solution to the file outputfile

one would type s(57).writeRawFilename(’outputfile’).

4.10 The .autorc File

Much of the default behavior of the AUTO CLUI can be controlled by the .autorc file. The
.autorc file can exist in either the main AUTO directory, the users home directory, or the current
directory. For any option which is defined in more then one file, the .autorc file in the current
directory (if it exists) takes precedence, followed by the .autorc file in the users home directory
(if it exists), and then the .autorc file in the main AUTO directory. Hence, options may be
defined on either a per directory, per user, or global basis.

The first section of the .autorc file begins with the line [AUTO command aliases] and this
section defines short names, or aliases, for the AUTO CLUI commands. Each line thereafter
is a definition of a command, similiar to branchPoint =commandQueryBranchPoint. The right
hand side of the assignment is the internal AUTO CLUI name for the command, while the left
hand side is the desired alias. Aliases and internal names may be used interchangably, but the
intention is that the aliases will be more commonly used. A default set of aliases is provided,
and these aliases will be used in the examples in the rest of this Chapter. The default aliases
are listed in the reference in Section 4.14.

NOTE: Defaults for the plotting tool may be included in the .autorc file as well. The docu-
mentation for this is under developement, but the file $AUTO DIR/.autorc contains examples of
how these options may be set.
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4.11 Two Dimensional Plotting Tool

The two dimensional plotting tool can be run by using the command plot() to plot the files
fort.7 and fort.8 after a calculation has been run, or using the command plot(’foo’) to plote
the data in the files s.foo and b.foo.

The menu bar provides two buttons. The File button brings up a menu which allows the
user to save the current plot as a Postscript file or to quit the plotter. The Options button
allows the plotter configuration options to be modified. The available options are decribed in
Table 4.7. In addition, the options can be set from within the CLUI. For example, the set of
commands in Figure 4.16 shows how to create a plotter and change its background color to
black. The demo script auto/07p/demo/python/plotter.py contains several examples of changing
options in plotters.

Pressing the right mouse button in the plotting window brings up a menu of buttons which
control several aspects of the plotting window. The top two toggle buttons control what function
the left button performs. The print value button causes the left button to print out the
numerical value underneath the pointer when it is clicked. When zoom button is checked the left
mouse button may be held down to create a box in the plot. When the left button is released the
plot will zoom to the selected portion of the diagram. The unzoom button returns the diagram
to the default zoom. The Postscript button allows the user to save the plot as a Postscript
file. The Configure... button brings up the dialog for setting configuration options.

AUTO> plot=pl()

Created plotter

AUTO> plot.config(bg="black")

AUTO>

Figure 4.16: This example shows how a plotter is created, and how the background color may be
changed to black. All other configuration options are set similarily. Note, the above commands
assume that the files fort.7 and fort.8 exist in the current directory.

Query string Meaning
background The background color of the plot.
bifurcation column defaults A set of bifurcation columns the user is likely to use.
bifurcation diagram A parsed bifurcation diagram file to plot.
bifurcation diagram filename The filename of the bifurcation diagram to plot.
bifurcation symbol The symbol to use for bifurcation points.
bifurcation x The column to plot along the X-axis for bifurcation diagrams.
bifurcation y The column to plot along the Y-axis for bifurcation diagrams.
color list A list of colors to use for multiple plots.
decorations Turn on or off the axis, tick marks, etc.
error symbol The symbol to use for error points.
foreground The background color of the plot.
grid Turn on or off the grid.
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hopf symbol The symbol to use for Hopf bifurcation points.
index An array of indicies to plot.
label An array of labels to plot.
label defaults A set of labels that the user is likely to use.
limit point symbol The symbol to use for limit points.
mark t The t value to marker with a small ball.
maxx The upper bound for the x-axis of the plot.
maxy The upper bound for the y-axis of the plot.
minx The lower bound for the x-axis of the plot.
miny The lower bound for the y-axis of the plot.
period doubling symbol The symbol to use for period doubling bifurcation points.
ps colormode The PostScript output mode: ’color’, ’gray’ or ’monochrome’.
runner The runner object from which to get data.
special point colors An array of colors used to mark special points.
special point radius The radius of the spheres used to mark special points.
solution A parsed solution file to plot.
solution column defaults A set of solution columns the user is likely to use.
solution filename The filename of the solution to plot.
solution x The column to plot along the X-axis for solutions.
solution y The column to plot along the Y-axis for solutions.
symbol font The font to use for marker symbols.
symbol color The color to use for the marker symbols.
tick label template A string which defines the format of the tick labels.
tick length The length of the tick marks.
torus symbol The symbol to use for torus bifurcation points.
type The type of the plot, either “solution” or “bifurcation”.
use labels Whether or not to display label numbers in the graph.
user point symbol The symbol to use for user defined output points.
xlabel The label for the x-axis.
xmargin The margin between the graph and the right and left edges.
xticks The number of ticks on the x-axis.
ylabel The label for the y-axis.
ymargin The margin between the graph and the top and bottom edges.
yticks The number of ticks on the y-axis.

Table 4.7: This table shows the options that can be set
for the AUTO CLUI two dimensional plotting window
and their meanings.
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4.12 Three Dimensional Plotting Tool

The AUTO three dimensional plotting tool, PLAUT04, as described in Chapter 8, can be run
from the Python CLUI using the command plot3 or commandPlotter3D, in a similar fashion
to plot. It does not use the options that are used for the two-dimensional plotting window.

4.13 Quick Reference

In this section we have created a table of all of the AUTO CLUI commands, their abbreviations,
and a one line description of what function they perform. Each command may be entered using
its full name or any of its aliases.

Command Aliases Description
commandAppend ap append Append data files.
commandCat cat Print the contents of a file
commandCd cd Change directories.
commandClean clean cl Clean the current directory.
commandCopyAndLoadDemo dm demo Copy a demo into the cur-

rent directory and load it.
commandCopyDataFiles copy cp Copy data files.
commandCopyDemo copydemo Copy a demo into the cur-

rent directory.
commandCopyFortFiles sv save Save data files.
commandCreateGUI gui Show AUTOs graphical user

interface.
commandDeleteDataFiles delete dl Delete data files.
commandDeleteFortFiles df deletefort Clear the current directory

of fort files.
commandDouble double db Double a solution.
commandInteractiveHelp man help Get help on the AUTO com-

mands.
commandLs ls List the current directory.
commandMoveFiles move mv Move data-files to a new

name.
commandParseConstantsFile cn constantsget Get the current continuation

constants.
commandParseDiagramAndSolutionFile bt diagramandsolu-

tionget
Parse both bifurcation dia-
gram and solution.

commandParseDiagramFile dg diagramget Parse a bifurcation diagram.
commandParseSolutionFile sl solutionget Parse solution file:
commandPlotter p2 pl plot 2D plotting of data.
commandPlotter3D plot3 p3 3D plotting of data.
commandQueryBranchPoint br bp branchpoint Print the “branch-point

function”.
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commandQueryEigenvalue eigenvalue ev eg Print eigenvalues of Jaco-
bian (algebraic case).

commandQueryFloquet fl floquet Print the Floquet multipli-
ers.

commandQueryHopf hb hp hopf lp Print the value of the “Hopf
function”.

commandQueryIterations iterations it Print the number of Newton
interations.

commandQueryLimitpoint lm limitpoint Print the value of the “limit
point function”.

commandQueryNote nt note Print notes in info file.
commandQuerySecondaryPeriod sc secondaryperiod

sp
Print value of “secondary-
periodic bif. fcn”.

commandQueryStepsize ss stepsize st Print continuation step
sizes.

commandRun r run rn Run AUTO.
commandRunnerConfigFort2 changeconstant cc ch Modify continuation con-

stants.
commandRunnerConfigFort12 hch Modify HomCont continua-

tion constants.
commandRunnerLoadName ld load Load files into the AUTO

runner.
commandRunnerPrintFort2 pc pr printconstant Print continuation parame-

ters.
commandRunnerPrintFort12 hpr Print HomCont continua-

tion parameters.
commandShell shell Run a shell command.
commandSpecialPointLabels splabs Return special labels.
commandTriple tr triple Triple a solution.
commandUserData us userdata Covert user-supplied data

files.
commandWait wait Wait for the user to enter a

key.
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4.14 Reference

4.14.1 commandAppend

Purpose

Append data files.

Description

Type commandAppend(’xxx’) to append the output-files fort.7, fort.8, fort.9, to exist-
ing data-files s.xxx, b.xxx, and d.xxx (if you are using the default filename templates).
Type commandAppend(’xxx’,’yyy’) to append existing data-files s.xxx, b.xxx, and
d.xxx to data-files s.yyy, b.yyy, and d.yyy (if you are using the default filename
templates).

Aliases

ap append

4.14.2 commandCat

Purpose

Print the contents of a file

Description

Type ’commandCat xxx’ to list the contents of the file ’xxx’. This calls the Unix
function ’cat’ for reading the file.

Aliases

cat
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4.14.3 commandCd

Purpose

Change directories.

Description

Type ’commandCd xxx’ to change to the directory ’xxx’. This command understands
both shell variables and home directory expansion.

Aliases

cd

4.14.4 commandClean

Purpose

Clean the current directory.

Description

Type commandClean() to clean the current directory. This command will delete all
files of the form fort.*, *.o, and *.exe.

Aliases

clean cl
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4.14.5 commandCopyAndLoadDemo

Purpose

Copy a demo into the current directory and load it.

Description

Type commandCopyAndLoadDemo(’xxx’) to copy all files from auto/07p/demos/xxx
to the current user directory. Here ’xxx’ denotes a demo name; e.g., ’abc’. Note that
the ’dm’ command also copies a Makefile to the current user directory. To avoid the
overwriting of existing files, always run demos in a clean work directory. NOTE: This
command automatically performs the commandRunnerLoadName command as well.

Aliases

dm demo

4.14.6 commandCopyDataFiles

Purpose

Copy data files.

Description

Type commandCopyDataFiles(’xxx’,’yyy’) to copy the data-files c.xxx, d.xxx, b.xxx,
and h.xxx to c.yyy, d.yyy, b.yyy, and h.yyy (if you are using the default filename
templates).

Aliases

copy cp
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4.14.7 commandCopyDemo

Purpose

Copy a demo into the current directory.

Description

Type commandCopyDemo(’xxx’) to copy all files from auto/07p/demos/xxx to the
current user directory. Here ’xxx’ denotes a demo name; e.g., ’abc’. Note that the
’dm’ command also copies a Makefile to the current user directory. To avoid the
overwriting of existing files, always run demos in a clean work directory.

Aliases

copydemo

4.14.8 commandCopyFortFiles

Purpose

Save data files.

Description

Type commandCopyFortFiles(’xxx’) to save the output-files fort.7, fort.8, fort.9, to
b.xxx, s.xxx, d.xxx (if you are using the default filename templates). Existing files
with these names will be overwritten.

Aliases

sv save
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4.14.9 commandCreateGUI

Purpose

Show AUTOs graphical user interface.

Description

Type commandCreateGUI() to start AUTOs graphical user interface.
NOTE: This command is not implemented yet.

Aliases

gui

4.14.10 commandDeleteDataFiles

Purpose

Delete data files.

Description

Type commandDeleteDataFiles(’xxx’) to delete the data-files d.xxx, b.xxx, and s.xxx
(if you are using the default filename templates).

Aliases

delete dl
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4.14.11 commandDeleteFortFiles

Purpose

Clear the current directory of fort files.

Description

Type commandDeleteFortFiles() to clean the current directory. This command will
delete all files of the form fort.*.

Aliases

df deletefort

4.14.12 commandDouble

Purpose

Double a solution.

Description

Type commandDouble() to double the solution in ’fort.7’ and ’fort.8’.
Type commandDouble(’xxx’) to double the solution in b.xxx and s.xxx (if you are
using the default filename templates).

Aliases

double db
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4.14.13 commandInteractiveHelp

Purpose

Get help on the AUTO commands.

Description

Type ’help’ to list all commands with a online help. Type ’help xxx’ to get help for
command ’xxx’.

Aliases

man help

4.14.14 commandLs

Purpose

List the current directory.

Description

Type ’commandLs’ to run the system ’ls’ command in the current directory. This
command will accept whatever arguments are accepted by the Unix command ’ls’.

Aliases

ls
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4.14.15 commandMoveFiles

Purpose

Move data-files to a new name.

Description

Type commandMoveFiles(’xxx’,’yyy’) to move the data-files b.xxx, s.xxx, d.xxx, and
c.xxx to b.yyy, s.yyy, d.yyy, and c.yyy (if you are using the default filename tem-
plates).

Aliases

move mv

4.14.16 commandParseConstantsFile

Purpose

Get the current continuation constants.

Description

Type commandParseConstantsFile(’xxx’) to get a parsed version of the constants file
c.xxx (if you are using the default filename templates).

Aliases

cn constantsget
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4.14.17 commandParseDiagramAndSolutionFile

Purpose

Parse both bifurcation diagram and solution.

Description

Type commandParseDiagramAndSolutionFile(’xxx’) to get a parsed version of the
diagram file b.xxx and solution file s.xxx (if you are using the default filename tem-
plates).

Aliases

bt diagramandsolutionget

4.14.18 commandParseDiagramFile

Purpose

Parse a bifurcation diagram.

Description

Type commandParseDiagramFile(’xxx’) to get a parsed version of the diagram file
b.xxx (if you are using the default filename templates).

Aliases

dg diagramget
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4.14.19 commandParseSolutionFile

Purpose

Parse solution file:

Description

Type commandParseSolutionFile(’xxx’) to get a parsed version of the solution file
s.xxx (if you are using the default filename templates).

Aliases

sl solutionget

4.14.20 commandPlotter

Purpose

2D plotting of data.

Description

Type commandPlotter(’xxx’) to run the graphics program for the graphical inspection
of the data-files b.xxx and s.xxx (if you are using the default filename templates).
The return value will be the handle for the graphics window.
Type commandPlotter() to run the graphics program for the graphical inspection
of the output-files ’fort.7’ and ’fort.8’. The return value will be the handle for the
graphics window.

Aliases

p2 pl plot
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4.14.21 commandPlotter3D

Purpose

3D plotting of data.

Description

Type commandPlotter3D(’xxx’) to run the graphics program for the graphical inspec-
tion of the data-files b.xxx and s.xxx (if you are using the default filename templates).
The return value will be the handle for the graphics window.
Type commandPlotter3D() to run the graphics program for the graphical inspection
of the output-files ’fort.7’ and ’fort.8’. The return value will be the handle for the
graphics window.

Aliases

plot3 p3

4.14.22 commandQueryBranchPoint

Purpose

Print the “branch-point function”.

Description

Type commandQueryBranchPoint() to list the value of the “branch-point function”
in the output-file fort.9. This function vanishes at a branch point.
Type commandQueryBranchPoint(’xxx’) to list the value of the “branch-point func-
tion” in the info file ’d.xxx’.

Aliases

br bp branchpoint
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4.14.23 commandQueryEigenvalue

Purpose

Print eigenvalues of Jacobian (algebraic case).

Description

Type commandQueryEigenvalue() to list the eigenvalues of the Jacobian in fort.9.
(Algebraic problems.)
Type commandQueryEigenvalue(’xxx’) to list the eigenvalues of the Jacobian in the
info file ’d.xxx’.

Aliases

eigenvalue ev eg

4.14.24 commandQueryFloquet

Purpose

Print the Floquet multipliers.

Description

Type commandQueryFloquet() to list the Floquet multipliers in the output-file fort.9.
(Differential equations.)
Type commandQueryFloquet(’xxx’) to list the Floquet multipliers in the info file
’d.xxx’.

Aliases

fl floquet
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4.14.25 commandQueryHopf

Purpose

Print the value of the “Hopf function”.

Description

Type commandQueryHopf() to list the value of the “Hopf function” in the output-file
fort.9. This function vanishes at a Hopf bifurcation point.
Type commandQueryHopf(’xxx’) to list the value of the “Hopf function” in the info
file ’d.xxx’.

Aliases

hb hp hopf lp

4.14.26 commandQueryIterations

Purpose

Print the number of Newton interations.

Description

Type commandQueryIterations() to list the number of Newton iterations per contin-
uation step in fort.9.
Type commandQueryIterations(’xxx’) to list the number of Newton iterations per
continuation step in the info file ’d.xxx’.

Aliases

iterations it
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4.14.27 commandQueryLimitpoint

Purpose

Print the value of the “limit point function”.

Description

Type commandQueryLimitpoint() to list the value of the “limit point function” in
the output-file fort.9. This function vanishes at a limit point (fold).
Type commandQueryLimitpoint(’xxx’) to list the value of the “limit point function”
in the info file ’d.xxx’.

Aliases

lm limitpoint

4.14.28 commandQueryNote

Purpose

Print notes in info file.

Description

Type commandQueryNote() to show any notes in the output-file fort.9.
Type commandQueryNote(’xxx’) to show any notes in the info file ’d.xxx’.

Aliases

nt note
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4.14.29 commandQuerySecondaryPeriod

Purpose

Print value of “secondary-periodic bif. fcn”.

Description

Type commandQuerySecondaryPeriod() to list the value of the “secondary-periodic
bifurcation function” in the output-file ’fort.9. This function vanishes at period-
doubling and torus bifurcations.
Type commandQuerySecondaryPeriod(’xxx’) to list the value of the “secondary-
periodic bifurcation function” in the info file ’d.xxx’.

Aliases

sc secondaryperiod sp

4.14.30 commandQueryStepsize

Purpose

Print continuation step sizes.

Description

Type commandQueryStepsize() to list the continuation step size for each continuation
step in ’fort.9.
Type commandQueryStepsize(’xxx’) to list the continuation step size for each con-
tinuation step in the info file ’d.xxx’.

Aliases

ss stepsize st
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4.14.31 commandRun

Purpose

Run AUTO.

Description

Type commandRun([options]) to run AUTO with the given options. There are four
possible options:

Long name Short name Description

-------------------------------------------

equation e The equations file

constants c The AUTO constants file

solution s The restart solution file

homcont h The Homcont parameter file

Options which are not explicitly set retain their previous value. For example one may
type: commandRun(e=’ab’,c=’ab.1’) to use ’ab.c’ as the equations file and c.ab.1 as
the constants file (if you are using the default filename templates).
You can also specify an sv=’xxx’ option to save to b.xxx, and so on, or ap to ap-
pend, or AUTO Constants, e.g., DS=0.05, or IRS=2. Special values for DS are ’+’
(forwards) and ’-’ (backwards).
Type commandRun(’name’) load all files with base ’name’. This does the same thing
as running commandRun(e=’name’,c=’name,s=’name’,h=’name’).
run(’name’,’save’) does the same thing as running
run(e=’name’,c=’name,s=’name’,h=’name’,sv=’save’).

Aliases

r run rn
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4.14.32 commandRunnerConfigFort2

Purpose

Modify continuation constants.

Description

Type commandRunnerConfigFort2(’xxx’,yyy) to change the constant ’xxx’ to have
value yyy.

Aliases

changeconstant cc ch

4.14.33 commandRunnerConfigFort12

Purpose

Modify HomCont continuation constants.

Description

Type commandRunnerConfigFort12(’xxx’,yyy) to change the HomCont constant
’xxx’ to have value yyy.

Aliases

hch
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4.14.34 commandRunnerLoadName

Purpose

Load files into the AUTO runner.

Description

Type commandRunnerLoadName([options]) to modify AUTO runner. There are four
possible options:

Long name Short name Description

-------------------------------------------

equation e The equations file

constants c The AUTO constants file

solution s The restart solution file

homcont h The Homcont parameter file

Options which are not explicitly set retain their previous value. For example one may
type: commandRunnerLoadName(e=’ab’,c=’ab.1’) to use ’ab.c’ as the equations file
and c.ab.1 as the constants file (if you are using the default filename templates).
Type commandRunnerLoadName(’name’) load all files with base
’name’. This does the same thing as running commandRunnerLoad-
Name(e=’name’,c=’name,s=’name’,h=’name’).
You can also specify AUTO Constants, e.g., DS=0.05, or IRS=2. Special values for
DS are ’+’ (forwards) and ’-’ (backwards).

Aliases

ld load
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4.14.35 commandRunnerPrintFort2

Purpose

Print continuation parameters.

Description

Type commandRunnerPrintFort2() to print all the parameters. Type commandRun-
nerPrintFort2(’xxx’) to return the parameter ’xxx’.

Aliases

pc pr printconstant

4.14.36 commandRunnerPrintFort12

Purpose

Print HomCont continuation parameters.

Description

Type commandRunnerPrintFort12() to print all the parameters. Type commandRun-
nerPrintFort12(’xxx’) to return the parameter ’xxx’.

Aliases

hpr
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4.14.37 commandShell

Purpose

Run a shell command.

Description

Type ’shell xxx’ to run the command ’xxx’ in the Unix shell and display the results
in the AUTO command line user interface.

Aliases

shell

4.14.38 commandSpecialPointLabels

Purpose

Return special labels.

Description

Type splabs(’xxx’,typename) to get a list of labels with the specified typename, where
typename can be one of ’EP’, ’MX’, ’BP’, ’LP’, ’UZ’, ’HB’, ’PD’, ’TR’, or ’RG’.
Or use splabs(s,typename) where s is a parsed solution from sl().

Aliases

splabs
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4.14.39 commandTriple

Purpose

Triple a solution.

Description

Type commandTriple() to triple the solution in ’fort.7’ and ’fort.8’.
Type commandTriple(’xxx’) to triple the solution in b.xxx and s.xxx (if you are using
the default filename templates).

Aliases

tr triple

4.14.40 commandUserData

Purpose

Covert user-supplied data files.

Description

Type commandUserData(’xxx’) to convert a user-supplied data file ’xxx.dat’ to
AUTO format. The converted file is called ’s.dat’. The original file is left unchanged.
AUTO automatically sets the period in PAR(10). Other parameter values must be set
in ’stpnt’. (When necessary, PAR(10) may also be redefined there.) The constants-
file file ’c.xxx’ must be present, as the AUTO-constants ’NTST’ and ’NCOL’ are used
to define the new mesh. For examples of using the ’userData’ command see demos
’lor’ and ’pen’ (where it has the old name ’fc’).

Aliases

us userdata
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4.14.41 commandWait

Purpose

Wait for the user to enter a key.

Description

Type ’commandWait’ to have the AUTO interface wait until the user hits any key
(mainly used in scripts).

Aliases

wait

63



Chapter 5

Running AUTO using Unix
Commands.

Apart from the Python commands described in the previous chapter, AUTO can also be run
with the GUI described in Chapter 9, or using the Unix commands described below. These Unix
commands run both directly in the shell and at the AUTO Python prompt. The AUTO aliases
must have been activated; see Section 1.1; and an equations-file xxx.f and a corresponding
constants-file c.xxx (see Section 3) must be in the current user directory.
Do not run AUTO in the directory auto/07p or in any of its subdirectories.

5.1 Basic commands.

@r : Type @r xxx to run AUTO. Restart data, if needed, are expected in s.xxx, and AUTO-
constants in c.xxx. This is the simplest way to run AUTO.

- Type @r xxx yyy to run AUTO with equations-file xxx.f and restart data-file s.yyy.
AUTO-constants must be in c.xxx.

- Type @r xxx yyy zzz to run AUTO with equations-file xxx.f, restart data-file s.yyy and
constants-file c.zzz.

@R : The command @R xxx is equivalent to the command @r xxx above.

- Type @R xxx i to run AUTO with equations-file xxx.f, constants-file c.xxx.i and, if
needed, restart data-file s.xxx.

- Type @R xxx i yyy to run AUTO with equations-file xxx.f, constants-file c.xxx.i and
restart data-file s.yyy.

@sv : Type @sv xxx to save the output-files fort.7, fort.8, fort.9, as b.xxx, s.xxx, d.xxx,
respectively. Existing files by these names will be deleted.

@ap : Type @ap xxx to append the output-files fort.7, fort.8, fort.9, to existing data-files
b.xxx, s.xxx, d.xxx, resp.

- Type @ap xxx yyy to append b.xxx, s.xxx, d.xxx, to b.yyy, s.yyy, d.yyy, resp.
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5.2 Plotting commands.

@p : Type @p xxx to run the graphics program PLAUT (See Chapter 7) for the graphical
inspection of the data-files b.xxx and s.xxx.

- Type @p to run the graphics program PLAUT for the graphical inspection of the output-
files fort.7 and fort.8.

@ps : Type @ps fig.x to convert a saved PLAUT figure fig.x from compact PLOT10 format
to PostScript format. The converted file is called fig.x.ps. The original file is left
unchanged.

5.3 File-manipulation.

@cp : Type @cp xxx yyy to copy the data-files b.xxx, s.xxx, d.xxx, c.xxx to b.yyy, s.yyy,
d.yyy, c.yyy, respectively.

@mv : Type @mv xxx yyy to move the data-files b.xxx, s.xxx, d.xxx, c.xxx, to b.yyy, s.yyy,
d.yyy, c.yyy, respectively.

@df : Type @df to delete the output-files fort.7, fort.8, fort.9.

@cl : Type @cl to clean the current directory. This command will delete all files of the form
fort.*, *.o, and *.exe.

@dl : Type @dl xxx to delete the data-files b.xxx, s.xxx, d.xxx.

5.4 Diagnostics.

@lp : Type @lp to list the value of the “limit point function” in the output-file fort.9. This
function vanishes at a limit point (fold).

- Type @lp xxx to list the value of the “limit point function” in the data-file d.xxx. This
function vanishes at a limit point (fold).

@bp : Type @bp to list the value of the “branch-point function” in the output-file fort.9.
This function vanishes at a branch point.

- Type @bp xxx to list the value of the “branch-point function” in the data-file d.xxx. This
function vanishes at a branch point.

@hb : Type @hb to list the value of the “Hopf function” in the output-file fort.9. This
function vanishes at a Hopf bifurcation point.

- Type @hb xxx to list the value of the “Hopf function” in the data-file d.xxx. This function
vanishes at a Hopf bifurcation point.
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@sp : Type @sp to list the value of the “secondary-periodic bifurcation function” in the
output-file fort.9. This function vanishes at period-doubling and torus bifurcations.

- Type @sp xxx to list the value of the “secondary-periodic bifurcation function” in the
data-file d.xxx. This function vanishes at period-doubling and torus bifurcations.

@it : Type @it to list the number of Newton iterations per continuation step in fort.9.

- Type @it xxx to list the number of Newton iterations per continuation step in d.xxx.

@st : Type @st to list the number of stable eigenvalues or stable Floquet multipliers per
continuation step in fort.9.

@ss : Type @st to list the continuation step size for each continuation step in fort.9.

- Type @st xxx to list the continuation step size for each continuation step in d.xxx.

@ev : Type @ev to list the eigenvalues of the Jacobian in fort.9. (Algebraic problems.)

- Type @ev xxx to list the eigenvalues of the Jacobian in d.xxx. (Algebraic problems.)

@fl : Type @fl to list the Floquet multipliers in the output-file fort.9. (Differential equa-
tions.)

- Type @fl xxx to list the Floquet multipliers in the data-file d.xxx. (Differential equations.)

5.5 File-editing.

@e7 : To use the vi editor to edit the output-file fort.7.

@e8 : To use the vi editor to edit the output-file fort.8.

@e9 : To use the vi editor to edit the output-file fort.9.

@j7 : To use the SGI jot editor to edit the output-file fort.7.

@j8 : To use the SGI jot editor to edit the output-file fort.8.

@j9 : To use the SGI jot editor to edit the output-file fort.9.

5.6 File-maintenance.

@lb : Type @lb to run an interactive utility program for listing, deleting and relabeling
solutions in the output-files fort.7 and fort.8. The original files are backed up as
∼fort.7 and ∼fort.8.

- Type @lb xxx to list, delete and relabel solutions in the data-files b.xxx and s.xxx. The
original files are backed up as ∼b.xxx and ∼s.xxx.
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- Type @lb xxx yyy to list, delete and relabel solutions in the data-files b.xxx and s.xxx.
The modified files are written as b.yyy and s.yyy.

@fc : Type @fc xxx to convert a user-supplied data file xxx.dat to AUTO format. The
converted file is called s.dat. The original file is left unchanged. AUTO automatically
sets the period in PAR(11). Other parameter values must be set in STPNT. (When necessary,
PAR(11) may also be redefined there.) The constants-file file c.xxx must be present, as
the AUTO-constants NTST and NCOL (Sections 10.3.1 and 10.3.2) are used to define the
new mesh. For examples of using the @fc command see demos lor and pen.

5.7 HomCont commands.

@h : Use @h instead of @r when using HomCont, i.e., when IPS=9 (see Chapter 20). Type
@h xxx to run AUTO/HomCont. Restart data, if needed, are expected in s.xxx, AUTO-
constants in c.xxx and HomCont-constants in s.xxx.

- Type @h xxx yyy to run AUTO/HomCont with equations-file xxx.f and restart data-file
s.yyy. AUTO-constants must be in c.xxx and HomCont-constants in s.xxx.

- Type @h xxx yyy zzz to run AUTO/HomCont with equations-file xxx.f, restart data-file
s.yyy and constants-files c.zzz and s.zzz.

@H : The command @H xxx is equivalent to the command @h xxx above.

- Type @H xxx i in order to run AUTO/HomCont with equations-file xxx.f and constants-
files c.xxx.i and s.xxx.i and, if needed, restart data-file s.xxx.

- Type @H xxx i yyy to run AUTO/HomCont with equations-file xxx.f, constants-files
c.xxx.i and s.xxx.i, and restart data-file s.yyy.

5.8 Copying a demo.

@dm : Type @dm xxx to copy all files from auto/07p/demos/xxx to the current user directory.
Here xxx denotes a demo name; e.g., abc. Note that the @dm command also copies a
Makefile to the current user directory. To avoid the overwriting of existing files, always
run demos in a clean work directory.

5.9 Viewing the manual.

@mn : Use gv to view the PDF version of this manual.
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Chapter 6

Output Files.

AUTO writes to standard output and three output-files :

- standard output: A summary of the computation is written to standard output, which
usually corresponds to the window in which AUTO is run. Only special, labeled solution
points are noted, namely those listed in Table 6.1. The letter codes in the Table are used
in the screen output. The numerical codes are used internally and in the fort.7 and
fort.8 output-files described below.

BP (1) Branch point (algebraic systems)
LP (2) Fold (algebraic systems)
HB (3) Hopf bifurcation

(4) User-specified regular output point
UZ (-4) Output at user-specified parameter value
LP (5) Fold (differential equations)
BP (6) Branch point (differential equations)
PD (7) Period doubling bifurcation
TR (8) Torus bifurcation
EP (9) End point of family; normal termination
MX (-9) Abnormal termination; no convergence

Table 6.1: Solution Types.

- fort.7 : The fort.7 output-file contains the bifurcation diagram. Its format is the same
as the fort.6 (screen) output, but the fort.7 output is more extensive, as every solution
point has an output line printed.

- fort.8 : The fort.8 output-file contains complete graphics and restart data for selected,
labeled solutions. The information per solution is generally much more extensive than that
in fort.7. The fort.8 output should normally be kept to a minimum.

- fort.9 : Diagnostic messages, convergence history, eigenvalues, and Floquet multipliers
are written in fort.9. It is strongly recommended that this output be habitually in-
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spected. The amount of diagnostic data can be controlled via the AUTO-constant IID;
see Section 10.9.2.

The user has some control over the fort.6 (screen) and fort.7 output via the AUTO-
constant IPLT (Section 10.9.3). Furthermore, the routine PVLS can be used to define “solution
measures” which can then be printed by “parameter overspecification”; see Section 10.7.10. For
an example see demo pvl.

The AUTO-commands @sv(sv), @ap(ap), and @df(df) can be used to manipulate the output-
files fort.7, fort.8, and fort.9. Furthermore, the AUTO-command @lb(rl) can be used to
delete and relabel solutions simultaneously in fort.7 and fort.8. For details see Section 5.

The graphics programs PLAUT, PLAUT04, and the Python CLUI command plot can be
used to graphically inspect the data in fort.7 and fort.8; see Chapters 7, 8, and 4.
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Chapter 7

The Graphics Program PLAUT.

PLAUT can be used to extract graphical information from the AUTO output-files fort.7 and
fort.8, or from the corresponding data-files b.xxx and s.xxx. To invoke PLAUT, use the the
@p command defined in Section 5. The PLAUT window (a Tektronix window) will appear, in
which PLAUT commands can be entered. For examples of using PLAUT see the tutorial demo
ab, in particular, Sections ?? and ??. See also demo pp2 in Section 14.3.

7.1 Basic PLAUT-Commands.

The principal PLAUT-commands are

bd0 : This command is useful for an initial overview of the bifurcation diagram as stored in
fort.7. If you have not previously selected one of the default options d0, d1, d2, d3, or
d4 described below then you will be asked whether you want solution labels, grid lines,
titles, or labeled axes.

bd : This command is the same as the bd0 command, except that you will be asked to enter
the minimum and the maximum of the horizontal and vertical axes. This is useful for
blowing up portions of a previously displayed bifurcation diagram.

ax : With the ax command you can select any pair of columns of real numbers from fort.7

as horizontal and vertical axis in the bifurcation diagram. (The default is columns 1 and
2). To determine what these columns represent, one can look at the screen ouput of the
corresponding AUTO run, or one can inspect the column headings in fort.7.

2d : Upon entering the 2d command, the labels of all solutions stored in fort.8 will be listed
and you can select one or more of these for display. The number of solution components is
also listed and you will be prompted to select two of these as horizontal and vertical axis
in the display. Note that the first component is typically the independent time or space
variable scaled to the interval [0,1].

sav : To save the displayed plot in a file. You will be asked to enter a file name. Each plot
must be stored in a separate new file. The plot is stored in compact PLOT10 format, which
can be converted to PostScript format with the AUTO-commands @ps; see Section 7.4.
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cl : To clear the graphics window.

lab : To list the labels of all solutions stored in fort.8. Note that PLAUT requires all labels
to be distinct. In case of multiple labels you can use the AUTO command @lb to relabel
solutions in fort.7 and fort.8.

end : To end execution of PLAUT.

7.2 Default Options.

After entering the commands bd0, bd, or 2d, you will be asked whether you want solution labels,
grid lines, titles, or axes labels. For quick plotting it is convenient to bypass these selections.
This can be done by the default commands d0, d1, d2, d3, or d4 below. These can be entered
as a single command or they can be entered as prefixes in the bd0 and bd commands. Thus, for
example, one can enter the command d1bd0.

d0 : Use solid curves, showing solution labels and symbols.

d1 : Use solid curves, except use dashed curves for unstable solutions and for solutions of
unknown stability. Show solution labels and symbols.

d2 : As d1, but with grid lines.

d3 : As d1, except for periodic solutions use solid circles if stable, and open circles if unstable
or if the stability is unknown.

d4 : Use solid curves, without labels and symbols.

If no default option d0, d1, d2, d3, or d4 has been selected or if you want to override
a default feature, then the the following commands can be used. These can be entered as
individual commands or as prefixes. For example, one can enter the command sydpbd0.

sy : Use symbols for special solution points, for example, open square = branch point, solid
square = Hopf bifurcation.

dp : “Differential Plot”, i.e., show stability of the solutions. Solid curves represent stable
solutions. Dashed curves are used for unstable solutions and for solutions of unknown
stability. For periodic solutions use solid/open circles to indicate stability/instability (or
unknown stability).

st : Set up titles and axes labels.

nu : Normal usage (reset special options).
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7.3 Other PLAUT-Commands.

The full PLAUT program has several other capabilities, for example,

scr : To change the diagram size.

rss : To change the size of special solution point symbols.

7.4 Printing PLAUT Files.

@ps : Type @ps fig.1 to convert a saved PLAUT file fig.1 to PostScript format in fig.1.ps.
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Chapter 8

The Graphics Program PLAUT04.

“Plaut04” is a graphic tool for AUTO data visualization. Here we explain how to view AUTO
data sets with Plaut04. An AUTO data set contains a solution file, “s.foo”, a bifurcation file,
“b.foo”, and a diagnostic file, “d.foo”. Here “foo” denotes a user-chosen data set name. This
user’s guide includes the following information:

1. A description of the Plaut04 window system.

2. A list of Plaut04 configuration options.

3. An example of using Plaut04.

8.1 Quick start

8.1.1 Starting and stopping Plaut04

Starting

The starting command for Plaut04 is: “plaut04”. A short Unix command is also provided
as “@pl”. In the Python CLUI, one can start Plaut04 by typing “plot3()”, “p3()”, or “com-
mandPlotter3D()”.

This command can have no argument, one argument, or two arguments.
If no argument is provided, then the system uses the AUTO default data files, fort.7, fort.8,

and fort.9, as inputs.
If one argument is given, it must be the name of the data set which we want to view. This

data set should be in the current directory.
When two arguments are given, the first is always the path to the data set, and the second

is the data set name.
Note that the AUTO data set name does not mean the full name of an AUTO file. It refers

to the postfix of AUTO data files. For example, if we have the AUTO data files: “s.H1”, “b.H1”,
and “d.H1”, the AUTO data file name is “H1”.
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Stopping

One can exit the system by clicking the cross at the top-right corner of the window or from the
“File” menu of the system.

8.1.2 Changing the “Type”

Often one will frequently change between the solution diagram and the bifurcation diagram.
The “Type” menu helps to complete this change. This menu includes two items, “Solution”,
and “Bifurcation”. There is a marker beside the current diagram. For example, if the current
diagram is the solution diagram, but we want to change to the bifurcation diagram, we can do
so by clicking “Type → Bifurcation” to switch to the bifurcation diagram.

Figure 8.1: The Type Menu Figure 8.2: The Style Menu

8.1.3 Changing the “Style”

Plaut04 provides four ways to draw the graphics, i.e., using curves, tubes, points, or as a
surface. One can select the style from the “Style” menu. The “Style” menu is shown in Figure
8.2.

8.1.4 Coordinate axes

Figure 8.3 shows the selections of the “Coord” menu. One may use this menu to select to show
or not to show coordinate axes, and the type of coordinate axes, in the graphics.

8.1.5 Options

The “Options” Menu provides functions to add or remove widgets from the graphics. It also
allows to start/stop solution or orbit animation. The “normalize data” normalizes the raw data
to [0,1]. “Preference” lets us set preferences for the GUI (see Figure 8.4).

8.1.6 CR3BP animation

The “Center” Menu allows to animate the motion of the three bodies in different coordinate
systems. We can animate the motion in a large-primary-centered inertial coordinate system, or
in a small-primary-centered inertial system, or in the bary-centered inertial system. Figure 8.5
displays the layout of the “Center” menu.
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Figure 8.3: The Draw-Coordinate-Axes Menu Figure 8.4: The Options Menu

Figure 8.5: The Center Menu Figure 8.6: The Help Menu

8.1.7 Help

The “Help” menu provides an on-line help on how to use Plaut04.

8.1.8 Picking a point in the diagram

The picking operation is useful when we want to know data corresponding to a certain point in
the diagram. In order to execute a picking operation, we should follow these steps.

• Click the arrow icon to change the mouse to picking state.

• Move the mouse to the point of interest.

• Click the left button of the mouse to pick the point.

Once a point has been picked, a new window is popped up. In this new window, the Floquet
multipliers of the point are shown in an x-y plane. Black crosses in the diagram indicate the
Floquet Multipliers. The solution, and the values of the corresponding Floquet Multipliers, are
given in the lower part of the window. A unit circle is drawn in the diagram. Figure 8.7 is an
example of the picking operation. From this diagram, we can see that two Floquet Multipliers
are outside the unit circle, two are on the unit circle, and the other two are inside the unit circle.
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STEP 1

STEP 3

STEP 2

Figure 8.7: Picking a point

X−Axis Y−Axis Z−Axis

Number of Periods
To Be Animated 

In Inertial Coord Sys

Line/Tube
ThicknessColoring Method

Labels To Be Shown

Orbit Animation Speed

Sattelite Animation Speed

Figure 8.8: Menu-bar layout

8.1.9 Choosing the variables

AUTO can generate large amounts of data. The CR3BP, for example, has 6 variables, i.e.,
x, y, z, x′, y′, z′, and time. One can choose to draw any combination of these variables in 2 or 3
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dimensions using Plaut04. On the list bar, we can see three dropdown lists with label “X”,
“Y”, and “Z” (See Figure 8.8). Each of these three lists has the exact number of choices, namely,
the number of variables of the system plus one. In our case, these lists have 7 choices, which
are represented by the integers 0 to 6. 0 represents time. 1 to 6 stand for x, y, z, x′, y′, and
z′, respectively. “1” is selected for “X”, which indicates that x is drawn on the X-axis. “2” is
selected for “Y”, which indicates that y is represented on the Y-axis. “3” is selected for “Z”,
which indicates that z is represented on the Z-axis.

Figure 8.9: Displaying multiple components

We can also show multiple combinations at the same time. For example, if we want to show
x-y-z and x’-y’-z’ in the same diagram, we can input 1, 4 in the “X” dropdown list to select x
and x′ being drawn on the X-axis, input 2, 5 in the “Y” list to show y and y′ on the Y-axis, and
input 3, 6 in the “Z” dropdown list to draw z and z′ on the Z-Axis. Note that after finishing
the input in the dropdown list box, we must type “ENTER” for the input to be accepted by
the system. Figure 8.9 shows the results of the above choices. The combination is flexible. For
example, if X is 1, Y is 3, 5, and Z is 4, 5, 6, the system will automatically reorganize them to
1− 3− 4, 1− 5− 5, 1− 3− 6 and show the results. If X is 1, 5, Y is 2, and Z is 3, 4, the system
reorganizes them to 1 − 2 − 3, 5 − 2 − 4.

Different components are drawn with different colors from blue to red.
The default values can be set in the resource file. If no resource file exists, then the system

will use “1” for X-axis, “2” for Y-axis, and “3”for Z-axis for both the solution and the bifurcation
diagrams.
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8.1.10 Choosing labels

From the Label list, we can choose the label of the solution to be drawn. If “ALL” is chosen,
all solutions are shown in the diagram. If “NONE” is chosen, none of the solutions is shown.
“HALF” shows the solutions with odd labels and special solutions only. “SPEC” lets the system
show the special solutions only. We can also show selected solutions by inputting their labels
in the list box separated by commas. For example, typing 1, 10, 15, 20 will lead the system to
show only the solutions with label 1, 10, 15 and 20.

We can set the default value for this list in the Plaut04 resource file.

8.1.11 Coloring

Many coloring methods are provided. They can be classified into three groups. The first group
is coloring by variables. This group provides as many choices as the number of variables of a
problem plus 1 for the time. The second group is coloring by parameters. These parameters
are defined by the AUTO user. in the AUTO constants file. There are as many choices as the
number of parameters defined in the AUTO constants file. The third group includes “TYPE”,
type of solution, “PONT”, point number, “BRAN”, the branch to which the solution belongs,
and “LABL”, label of the solution. Different coloring methods cannot be used at the same time.
Figure 8.10 shows the difference between coloring by type and coloring by label. From Figure
8.10(a), we can see that there is only one branching orbit in this family, which is shown in cyan.
In Figure 8.10(b), the start solution is colored in blue, and the last solution is colored in red.
When using time to color the diagram, 0 is set to blue, while 1 is set to red.

(a) Coloring by “Type” (b) Coloring by “Label” (c) Coloring by “Time”

Figure 8.10: Coloring

We can set the default value in the Plaut04 resource file.

8.1.12 Number of periods to be animated

Generally only one period is animated when we animate the solution in the inertial frame.
However, the SpinBox allows us to change the default value. This is a specially designed function
for the CR3BP. It is useful when we animate the motion in the three bodies in the inertial frame.
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8.1.13 Changing the line/tube thickness

The “Line Thickness” spinbox allows us to increase or decrease the line/tube thickness in the
diagram. The Plaut04 resource file also provides a way to change the default values of the
line/tube thickness.

8.1.14 Changing the animation speed

The “Sat” and “Orbit” scale bar allow us to change the animation speed. Their Maximum and
Minimum value can be set in the resource file.

8.1.15 Changing the background picture

A user can set the background with his favorite picture. To do this, a user should copy the
picture to the directory “$AUTO DIR/plaut04/widgets”, and then change the name of the file
to “background.rgb”.

8.2 Setting up the resource file

The Plaut04 resource file sets default values for almost all controls of Plaut04. Plaut04 al-
lows us to write our own resources files and put them in the same directory as the AUTO data
files. Plaut04 first looks for the resource file in the current directory. If it cannot find a
resource file there, then it will try to use the one installed in the AUTO root directory. If both
these searches fail, then the internal default values will be used.

In order to write a usable resource file, one should follow the following rules:

1. Comment lines start with “#”. Comments may take as many lines as desired.

2. Between the “variable name” and the default value, we must use “=” to tell the system
that the left side is the “variable name”, and the right side is its corresponding default
value.

3. If a “variable” has aggregate values, a comma “,” must be used between two values.

4. The line type is set using 4-digit hexadecimals, starting with “0x”. Its values can range
from 0 (invisible) to “0xffff” (solid). The system default is “0xffff” for stable solutions,
and “0x3333” for unstable ones. The line pattern is determined by the number of 1s and
0s when the hexadecimal is converted to a 16-bit binary. A “1” indicates that the drawing
occurs, and “0” that it does not, on a pixel by pixel basis. For example, the pattern
“0xAAAA”, in binary is 0000100010001000, and Plaut04 interprets this as drawing 3
bits off, 1 bit on, 3 bits off, 1 bit on, 3 bits off, 1 bit on and finally 4 bits off. The pattern
is read backward because the low order bits are used first.

5. Some variables can only be set to “Yes” or “No”. They cannot be assigned other values.

6. No “variable name” should be modified.
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It is strongly recommended that the default resource file is used as a template when writing
a custom resource file.

Below is a copy of the default resource file.

#version 0.0

# Line colors are represented by RGB values from 0 to 1.0.

# DEFAULT color is also used when animationLabel == 0, i.e.,

# when showing all solutions and animating the solution change.

# Point Type RED GREEN BLUE PATTERN

DEFAULT = 1.0, 1.0, 1.0, 0xffff

BP = 1.0, 0.0, 0.0, 0xffff

LP ALG = 0.0, 1.0, 0.0, 0xffff

HB = 0.0, 0.0, 1.0, 0xffff

UZ4 = 1.0, 1.0, 0.0, 0xffff

UZ-4 = 0.5, 0.5, 0.0, 0xffff

LP DIF = 0.0, 0.0, 0.5, 0xffff

BP DIF = 0.0, 0.5, 0.5, 0xffff

PD = 1.0, 0.0, 1.0, 0xffff

TR = 0.0, 1.0, 1.0, 0xffff

EP = 0.3, 0.0, 0.3, 0xffff

MX = 0.6, 0.0, 0.6, 0xffff

OTHERS = 1.0, 1.0, 1.0, 0xffff

# Initialize the line pattern for showing stability

UNSTABLE LINE PATTERN = 0xffff

STABLE LINE PATTERN = 0xffff

# Initialize the default options:

Draw Reference Plane = No

Orbit Animation = No

Satellite Animation = No

Draw Primaries = No

Draw Libration Points = No

Normalize Data = Yes

Draw Background = No

# Initialize the default coordinate axes:

# 0 --- None,

# 1 --- at origin

# 2 --- at left and behind

# 3 --- at left and ahead

Coordinate Type = 3

# Draw Scale on the Aexs

Draw Scale = Yes

# Initialize the default graph type:

# 0 --- Solution (fort.8)

# 1 --- Bifurcation (fort.7)

Graph Type = 0

# Initialize the default graph style:

# 0 --- LINES,
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# 1 --- TUBES,

# 2 --- SURFACE

Graph Style = 0

# Set the window width and height:

Window Width = 1000

Window Height = 1000

# Set X, Y, Z axes for the solution diagram:

# 0 is Time for X,Y,Z.

X Axis Solution = 1

Y Axis Solution = 2

Z Axis Solution = 3

# Set X, Y, Z axes for the bifurcation diagram:

X Axis Bifurcation = 4

Y Axis Bifurcation = 5

Z Axis Bifurcation = 6

#Labeled solutions:

Labels = 0

# Set coloring method:

# -5 --- STABILITY

# -4 --- POINT

# -3 --- BRANCH

# -2 --- TYPE

# -1 --- LABEL

# Otherwise, according to the data in the ith column of the solution file.

# It can only be set to an integer value.

Coloring Method = -2

Number of Period Animated = 1

# Line Width Scaler adjusts the thickness of curves:

Line Width Scaler = 1.0

# The AniLine Thickness Scaler sets the thickness of animated solution curves:

AniLine Thickness Scaler = 3.0

# Background color:

Background Color = 0.0, 0.0, 0.0

# Background transparency:

Background Transparency = 0.0

# Disk transparency

# IF you turn Disk From File to "Yes", you should change the transparency there.

Disk Transparency = 0.7

# Read Disk From File

Disk From File = No

# Axes color:

X Axis Color = 1.0, 0.0, 0.0
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Y Axis Color = 0.0, 1.0, 0.0

Z Axis Color = 0.0, 0.0, 1.0

# Color of the satellite, large primary, and small primary in animation:

satellite Color = 1.0, 0.0, 0.0

large primary Color = 0.0, 1.0, 0.0

large primary tail Color = 0.0, 1.0, 1.0

small primary Color = 0.0, 0.0, 1.0

small primary tail Color = 0.5, 0.5, 0.0

# Stable solution color:

Stable Solution Color = 0.0, 0.0, 1.0

# Stable solution color:

Unstable Solution Color = 1.0, 0.0, 0.0

# Set the radius of the satellite, large primary, and small primary:

# The normal size is 1.0.

# For smaller radius, use 0.xxx

# For bigger radius, use X.XXX

Satellite Radius = 1.0

Large Primary Radius = 1.0

Small Primary Radius = 1.0

Libration Point Size = 1.0

# Set the maximum and minimum satellite animation speed:

Sat Max Animation Speed = 100

Sat Min Animation Speed = 0

# Set the maximum and minimum orbit-change animation speed:

Orbit Max Animation Speed = 100

Orbit Min Animation Speed = 0

# Set the active AUTO parameter indices:

parameter ID = 10

# Choose 3D or 2D graph:

3D = Yes

8.3 Example

In this example, we want to view a CR3BP data set. We want the diagram to show the “x”
component on the X-axis, “y” component on the Y-axis, and “z” component on the Z-axis
for the solution diagram. In the CR3BP, we use the parameters “1 2 3 10 21 22 23” in the
AUTO calculations, and we also want to be able to use these to color the diagram, so we set
the “parameter indices”.

Other preferences include

• The diagram is drawn using Tubes.

• Coordinate axes are not drawn.
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• No animation.

• Reference plane, libration points, and primaries are drawn.

• All labels are shown.

• Data is not normalized.

The settings are the settings in the resource file are then as follows:

# Initialize the default options

Draw Reference Plane = Yes

Orbit Animation = No

Satellite Animation = No

Draw Primaries = Yes

Draw Libration Points = Yes

Normalize Data = No

Draw Background = No

# Initialize the default graph type

# 0 --- Solution(fort.8) 1 --- Bifurcation(fort.7)

Graph Type = 0

# initialize the default graph style

# 0 --- LINES, 1 --- TUBES, 2 ---- SURFACE 3--- nurbs curve

graph Style = 1

# set X, Y, Z, and Label

# 0 is Time for X,Y,Z. 0 is "All" for Label

Solution X Axis = 1

Solution Y Axis = 2

Solution Z Axis = 3

Labels = 0

#set the parameter indices

parameter ID = 1, 2, 3, 10, 15, 21, 22, 23

Based on the above settings, the solution diagram for the CR3BP family  L1 for µ = 0.01215
appears in Figure 8.11.
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Figure 8.11: Example
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Chapter 9

The Graphical User Interface GUI94.

9.1 General Overview.

The AUTO graphical user interface (GUI) is a tool for creating and editing equations-files and
constants-files; see Section 3 for a description of these files. The GUI can also be used to run
AUTO and to manipulate and plot output-files and data-files; see Section 5 for corresponding
commands. To use the GUI for a new equation, change to an empty work directory. For
an existing equations-file, change to its directory. (Do not activate the GUI in the directory
auto/07p or in any of its subdirectories.) Then type

@auto,
or its abbreviation @a. Here we assume that the AUTO aliases have been activated; see

Section 1.1. The GUI includes a window for editing the equations-file, and four groups of
buttons, namely, the Menu Bar at the top of the GUI, the Define Constants-buttons at the
center-left, the Load Constants-buttons at the lower left, and the Stop- and Exit-buttons.

Note : Most GUI buttons are activated by point-and-click action with the left mouse
button. If a beep sound results then the right mouse button must be used.

9.1.1 The Menu bar.

It contains the main buttons for running AUTO and for manipulating the equations-file, the
constants-file, the output-files, and the data-files. In a typical application, these buttons are
used from left to right. First the Equations are defined and, if necessary, Edited, before being
Written. Then the AUTO-constants are Defined. This is followed by the actual Run of AUTO.
The resulting output-files can be Saved as data-files, or they can be Appended to existing data-
files. Data-files can be Plotted with the graphics program PLAUT, and various file operations
can be done with the Files-button. Auxiliary functions are provided by the Demos-, Misc-, and
Help-buttons. The Menu Bar buttons are described in more detail in Section 9.2.

9.1.2 The Define-Constants-buttons.

These have the same function as the Define-button on the Menu Bar, namely to set and change
AUTO-constants. However, for the Define-button all constants appear in one panel, while for
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the Define Constants-buttons they are grouped by function, as in Chapter 10, namely Prob-
lem definition constants, Discretization constants, convergence Tolerances, continuation Step
Size, diagram Limits, designation of free Parameters, constants defining the Computation, and
constants that specify Output options.

9.1.3 The Load-Constants-buttons.

The Previous-button can be used to load an existing AUTO-constants file. Such a file is also
loaded, if it exists, by the Equations-button on the Menu Bar. The Default-button can be used
to load default values of all AUTO-constants. Custom editing is normally necessary.

9.1.4 The Stop- and Exit-buttons.

The Stop-button can be used to abort execution of an AUTO-run. This should be done only
in exceptional circumstances. Output-files, if any, will normally be incomplete and should be
deleted. Use the Exit-button to end a session.

9.2 The Menu Bar.

9.2.1 Equations-button.

This pull-down menu contains the items Old, to load an existing equations-file, New, to load a
model equations-file, and Demo, to load a selected demo equations-file. Equations-file names
are of the form xxx.f. The corresponding constants-file c.xxx is also loaded if it exists. The
equation name xxx remains active until redefined.

9.2.2 Edit-button.

This pull-down menu contains the items Cut and Copy, to be performed on text in the GUI
window highlighted by click-and-drag action of the mouse, and the item Paste, which places
editor buffer text at the location of the cursor.

9.2.3 Write-button.

This pull-down menu contains the item Write, to write the loaded files xxx.f and c.xxx, by
the active equation name, and the item Write As to write these files by a selected new name,
which then becomes the active name.

9.2.4 Define-button.

Clicking this button will display the full AUTO-constants panel. Most of its text fields can be
edited, but some have restricted input values that can be selected with the right mouse button.
Some text fields will display a subpanel for entering data. To actually apply changes made in
the panel, click the OK- or Apply-button at the bottom of the panel.
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9.2.5 Run-button.

Clicking this button will write the constants-file c.xxx and run AUTO. If the equations-file has
been edited then it should first be rewritten with the Write-button.

9.2.6 Save-button.

This pull-down menu contains the item Save, to save the output-files fort.7, fort.8, fort.9,
as b.xxx, s.xxx, d.xxx, respectively. Here xxx is the active equation name. It also contains the
item Save As, to save the output-files under another name. Existing data-files with the selected
name, if any, will be overwritten.

9.2.7 Append-button.

This pull-down menu contains the item Append, to append the output-files fort.7, fort.8,
fort.9, to existing data-files b.xxx, s.xxx, d.xxx, respectively. Here xxx is the active equation
name. It also contains the item Append To, to append the output-files to other existing data-files.

9.2.8 Plot-button.

This pull-down menu contains the items Plot, to run the plotting program PLAUT for the
data-files b.xxx and s.xxx, where xxx is the active equation name, and the item Name, to run
PLAUT with other data-files.

9.2.9 Files-button.

This pull-down menu contains the item Restart, to redefine the restart file. Normally, when
restarting from a previously computed solution, the restart data is expected in the file s.xxx,
where xxx is the active equation name. Use the Restart-button to read the restart data from
another data-file in the immediately following run. The pull-down menu also contains the
following items :

- Copy, to copy b.xxx, s.xxx, d.xxx, c.xxx, to b.yyy, s.yyy, d.yyy, c.yyy, resp.;

- Append, to append data-files b.xxx, s.xxx, d.xxx, to b.yyy, s.yyy, d.yyy, resp.;

- Move, to move b.xxx, s.xxx, d.xxx, c.xxx, to b.yyy, s.yyy, d.yyy, c.yyy, resp.;

- Delete, to delete data-files b.xxx, s.xxx, d.xxx;

- Clean, to delete all files of the form fort.*, *.o, and *.exe.

9.2.10 Demos-button.

This pulldown menu contains the items Select, to view and run a selected AUTO demo in the
demo directory, and Reset, to restore the demo directory to its original state. Note that demo
files can be copied to the user work directory with the Equations/Demo-button.
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9.2.11 Misc.-button.

This pulldown menu contains the items Tek Window and VT102 Window, for opening windows;
Emacs and Xedit, for editing files, and Print, for printing the active equations-file xxx.f.

9.2.12 Help-button.

This pulldown menu contains the items AUTO-constants, for help on AUTO-constants, and
User Manual, for viewing the user manual; i.e., this document.

9.3 Using the GUI.

AUTO-commands are described in Section 5 and illustrated in the demos. In Table 9.1 we list
the main AUTO-commands together with the corresponding GUI button.

@r Run
@sv Save
@ap Append
@p Plot
@cp Files/Copy
@mv Files/Move
@cl Files/Clean
@dl Files/Delete
@dm Equations/Demo

Table 9.1: Command Mode - GUI correspondences.

The AUTO-command @r xxx yyy is given in the GUI as follows : click Files/Restart and
enter yyy as data. Then click Run. As noted in Section 5, this will run AUTO with the current
equations-file xxx.f and the current constants-file c.xxx, while expecting restart data in s.yyy.
The AUTO-command @ap xxx yyy is given in the GUI by clicking Files/Append.

9.4 Customizing the GUI.

9.4.1 Print-button.

The Misc/Print-button on the Menu Bar can be customized by editing the file GuiConsts.h in
directory auto/07p/include.

9.4.2 GUI colors.

GUI colors can be customized by creating an X resource file. Two model files can be found
in directory auto/07p/gui, namely, Xdefaults.1 and Xdefaults.2. To become effective, edit
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one of these, if desired, and copy it to .Xdefaults in your home directory. Color names can
often be found in the system file /usr/lib/X11/rgb.txt.

9.4.3 On-line help.

The file auto/07p/include/GuiGlobal.h contains on-line help on AUTO-constants and demos.
The text can be updated, subject to a modifiable maximum length. On SGI machines this is
10240 bytes, which can be increased, for example, to 20480 bytes, by replacing the line CC =
cc -Wf, -XNl10240 -O in auto/07p/gui/Makefile by CC = cc -Wf, -XNl20480 -O On other
machines, the maximum message length is the system defined maximum string literal length.
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Chapter 10

Description of AUTO-Constants.

10.1 The AUTO-Constants File.

As described in Section 3, if the equations-file is xxx.f then the constants that define the
computation are normally expected in the file c.xxx. The general format of this file is the same
for all AUTO runs. For example, the file c.cusp in directory auto/07p/demos/cusp is listed
below. (The tutorial demo cusp is described in detail in Chapter 12.)

1 1 0 1 NDIM,IPS,IRS,ILP

2 2 1 NICP,(ICP(I),I=1,NICP)

5 4 3 2 1 0 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

200 -2. 2. 0 100 NMX,RL0,RL1,A0,A1

20 0 2 8 5 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1.e-6 1.e-6 0.0001 EPSL,EPSU,EPSS

0.01 0.005 0.1 1 DS,DSMIN,DSMAX,IADS

0 NTHL,((I,THL(I)),I=1,NTHL)

0 NTHU,((I,THU(I)),I=1,NTHU)

0 NUZR,((I,UZR(I)),I=1,NUZR)

The significance of the AUTO-constants, grouped by function, is described in the sections
below. Representative demos that illustrate use of the AUTO-constants are also mentioned.

10.2 Problem Constants.

10.2.1 NDIM

Dimension of the system of equations as specified in the user-supplied routine FUNC.

10.2.2 NBC

The number of boundary conditions as specified in the user-supplied routine BCND.
(Demos exp, kar.)
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10.2.3 NINT

The number of integral conditions as specified in the user-supplied routine ICND.
(Demos int, lin, obv.)

10.2.4 JAC

Used to indicate whether derivatives are supplied by the user or to be obtained by differencing :

- JAC=0 : No derivatives are given by the user. (Most demos use JAC=0.)

- JAC=1 : Derivatives with respect to state- and problem-parameters are given in the user-
supplied routines FUNC, BCND, ICND and FOPT, where applicable. This may be necessary for
sensitive problems. It is also recommended for computations in which AUTO generates
an extended system, for example, when ISW=2. (For ISW see Section 10.8.3.)
(Demos int, dd2, obt, plp, ops.)

10.3 Discretization Constants.

10.3.1 NTST

The number of mesh intervals used for discretization. NTST remains fixed during any particular
run, but can be changed when restarting. (For mesh adaption see IAD in Section 10.3.3.)
Recommended value of NTST : As small as possible to maintain convergence.
(Demos exp, ab, spb.)

10.3.2 NCOL

The number of Gauss collocation points per mesh interval, (2 ≤ NCOL ≤ 7). NCOL remains fixed
during any given run, but can be changed when restarting at a previously computed solution.
The choice NCOL=4, used in most demos, is recommended. If NDIM is “large” and the solutions
“very smooth” then NCOL=2 may be appropriate.

10.3.3 IAD

This constant controls the mesh adaption :

- IAD=0 : Fixed mesh. Normally, this choice should never be used, as it may result in
spurious solutions. (Demo ext.)

- IAD>0 : Adapt the mesh every IAD steps along the family. Most demos use IAD=3, which
is the strongly recommended value.

When computing “trivial” solutions to a boundary value problem, for example, when all
solution components are constant, then the mesh adaption may fail under certain circumstances,
and overflow may occur. In such case, try recomputing the solution family with a fixed mesh
(IAD=0). Be sure to set IAD back to IAD=3 for computing eventual non-trivial bifurcating
solution families.
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10.4 Tolerances.

10.4.1 EPSL

Relative convergence criterion for equation parameters in the Newton/Chord method. Most
demos use EPSL=10−6 or EPSL=10−7, which is the recommended value range.

10.4.2 EPSU

Relative convergence criterion for solution components in the Newton/Chord method. Most
demos use EPSU=10−6 or EPSU=10−7, which is the recommended value range.

10.4.3 EPSS

Relative arclength convergence criterion for the detection of special solutions. Most demos use
EPSS=10−4 or EPSS=10−5, which is the recommended value range. Generally, EPSS should be
approximately 100 to 1000 times the value of EPSL, EPSU.

10.4.4 ITMX

The maximum number of iterations allowed in the accurate location of special solutions, such
as bifurcations, folds, and user output points, by Müller’s method with bracketing. The recom-
mended value is ITMX=8, used in most demos.

10.4.5 NWTN

After NWTN Newton iterations the Jacobian is frozen, i.e., AUTO uses full Newton for the first
NWTN iterations and the Chord method for iterations NWTN+1 to ITNW. The choice NWTN=3 is
strongly recommended and used in most demos. Note that this constant is only effective for
ODEs, i.e., for solving the piecewise polynomial collocation equations. For algebraic systems
AUTO always uses full Newton.

10.4.6 ITNW

The maximum number of combined Newton-Chord iterations. When this maximum is reached,
the step will be retried with half the stepsize. This is repeated until convergence, or until the
minimum stepsize is reached. In the latter case the computation of the family is discontinued
and a message printed in fort.9. The recommended value is ITNW=5, but ITNW=7 may be used
for “difficult” problems, for example, demos spb, chu, plp, etc.
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10.5 Continuation Step Size.

10.5.1 DS

AUTO uses pseudo-arclength continuation for following solution families. The pseudo-arclength
stepsize is the distance between the current solution and the next solution on a family. By
default, this distance includes all state variables (or state functions) and all free parameters.
The constant DS defines the pseudo-arclength stepsize to be used for the first attempted step
along any family. (Note that if IADS>0 then DS will automatically be adapted for subsequent
steps and for failed steps.) DS may be chosen positive or negative; changing its sign reverses the
direction of computation. The relation DSMIN ≤ | DS | ≤ DSMAX must be satisfied. The precise
choice of DS is problem-dependent; the demos use a value that was found appropriate after some
experimentation.

10.5.2 DSMIN

This is minimum allowable absolute value of the pseudo-arclength stepsize. DSMIN must be
positive. It is only effective if the pseudo-arclength step is adaptive, i.e., if IADS>0. The choice
of DSMIN is highly problem-dependent; most demos use a value that was found appropriate after
some experimentation. See also the discussion in Section 11.2.

10.5.3 DSMAX

The maximum allowable absolute value of the pseudo-arclength stepsize. DSMAX must be positive.
It is only effective if the pseudo-arclength step is adaptive, i.e., if IADS>0. The choice of DSMAX
is highly problem-dependent; most demos use a value that was found appropriate after some
experimentation. See also the discussion in Section 11.2.

10.5.4 IADS

This constant controls the frequency of adaption of the pseudo-arclength stepsize.

- IADS=0 : Use fixed pseudo-arclength stepsize, i.e., the stepsize will be equal to the specified
value of DS for every step. The computation of a family will be discontinued as soon as
the maximum number of iterations ITNW is reached. This choice is not recommended.
(Demo tim.)

- IADS>0 : Adapt the pseudo-arclength stepsize after every IADS steps. If the New-
ton/Chord iteration converges rapidly then | DS | will be increased, but never beyond
DSMAX. If a step fails then it will be retried with half the stepsize. This will be done
repeatedly until the step is successful or until | DS | reaches DSMIN. In the latter case
nonconvergence will be signalled. The strongly recommended value is IADS=1, which is
used in almost all demos.
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10.5.5 NTHL

By default, the pseudo-arclength stepsize includes all state variables (or state functions) and all
free parameters. Under certain circumstances one may want to modify the weight accorded to
individual parameters in the definition of stepsize. For this purpose, NTHL defines the number of
parameters whose weight is to be modified. If NTHL=0 then all weights will have default value
1.0 . If NTHL>0 then one must enter NTHL pairs, Parameter Index Weight , with each pair on
a separate line.

For example, for the computation of periodic solutions it is recommended that the period
not be included in the pseudo-arclength continuation stepsize, in order to avoid period-induced
limitations on the stepsize near orbits of infinite period. This exclusion can be accomplished by
setting NTHL=1, with, on a separate line, the pair 11 0.0 . Most demos that compute periodic
solutions use this option; see for example demo ab.

10.5.6 NTHU

Under certain circumstances one may want to modify the weight accorded to individual state
variables (or state functions) in the definition of stepsize. For this purpose, NTHU defines the
number of states whose weight is to be modified. If NTHU=0 then all weights will have default
value 1.0 . If NTHU>0 then one must enter NTHU pairs, State Index Weight , with each pair on
a separate line. At present none of the demos use this option.

10.6 Diagram Limits.

There are three ways to limit the computation of a family :

- By appropriate choice of the computational window defined by the constants RL0, RL1, A0,
and A1. One should always check that the starting solution lies within this computational
window, otherwise the computation will stop immediately at the starting point.

- By specifying the maximum number of steps, NMX.

- By specifying a negative parameter index in the list associated with the constant NUZR;
see Section 10.9.4.

10.6.1 NMX

The maximum number of steps to be taken along any family.

10.6.2 RL0

The lower bound on the principal continuation parameter. (This is the parameter which appears
first in the ICP list; see Section 10.7.1.).
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10.6.3 RL1

The upper bound on the principal continuation parameter.

10.6.4 A0

The lower bound on the principal solution measure. (By default, if IPLT=0, the principal solution
measure is the L2-norm of the state vector or state vector function. See the AUTO-constant
IPLT in Section 10.9.3 for choosing another principal solution measure.)

10.6.5 A1

The upper bound on the principal solution measure.

10.7 Free Parameters.

10.7.1 NICP, ICP

For each equation type and for each continuation calculation there is a typical (“generic”)
number of problem parameters that must be allowed to vary, in order for the calculations to
be properly posed. The constant NICP indicates how many free parameters have been specified,
while the array ICP actually designates these free parameters. The parameter that appears first
in the ICP list is called the “principal continuation parameter”. Specific examples and special
cases are described below.

10.7.2 Fixed points.

The simplest case is the continuation of a solution family to the system f(u, p) = 0, where
f(·, ·), u ∈ Rn, cf. Equation (2.1). Such a system arises in the continuation of ODE stationary
solutions and in the continuation of fixed points of discrete dynamical systems. There is only
one free parameter here, so NICP=1.

As a concrete example, consider Run 1 of demo ab, where NICP=1, with ICP(1)=1. Thus, in
this run PAR(1) is designated as the free parameter.

10.7.3 Periodic solutions and rotations.

The continuation of periodic solutions and rotations generically requires two parameters, namely,
one problem parameter and the period. Thus, in this case NICP=2. For example, in Run 2 of
demo ab we have NICP=2, with ICP(1)=1 and ICP(2)=11. Thus, in this run, the free parameters
are PAR(1) and PAR(11). (Note that AUTO reserves PAR(11) for the period.)

Actually, for periodic solutions, one can set NICP=1 and only specify the index of the free
problem parameter, as AUTO will automatically addd PAR(11). However, in this case the period
will not appear in the screen output and in the fort.7 output-file.

For fixed period orbits one must set NICP=2 and specify two free problem parameters. For
example, in Run 7 of demo pp2, we have NICP=2, with PAR(1) and PAR(2) specified as free
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problem parameters. The period PAR(11) is fixed in this run. If the period is large then such a
continuation provides a simple and effective method for computing a locus of homoclinic orbits.

10.7.4 Folds and Hopf bifurcations.

The continuation of folds for algebraic problems and the continuation of Hopf bifurcations
requires two free problem parameters, i.e., NICP=2. For example, to continue a fold in Run 3 of
demo ab, we have NICP=2, with PAR(1) and PAR(3) specified as free parameters. Note that one
must set ISW=2 for computing such loci of special solutions. Also note that in the continuation
of folds the principal continuation parameter must be the one with respect to which the fold
was located.

10.7.5 Folds and period-doublings.

The continuation of folds, for periodic orbits and rotations, and the continuation of period-
doubling bifurcations require two free problem parameters plus the free period. Thus, one would
normally set NICP=3. For example, in Run 6 of demo pen, where a locus of period-doubling
bifurcations is computed for rotations, we have NICP=3, with PAR(2), PAR(3), and PAR(11)

specified as free parameters. Note that one must set ISW=2 for computing such loci of special
solutions. Also note that in the continuation of folds the principal continuation parameter must
be the one with respect to which the fold was located.

Actually, one may set NICP=2, and only specify the problem parameters, as AUTO will
automatically add the period. For example, in Run 3 of demo plp, where a locus of folds
is computed for periodic orbits, we have NICP=2, with PAR(4) and PAR(1) specified as free
parameters. However, in this case the period will not appear in the screen output and in the
fort.7 output-file.

To continue a locus of folds or period-doublings with fixed period, simply set NICP=3 and
specify three problem parameters, not including PAR(11).

10.7.6 Boundary value problems.

The simplest case is that of boundary value problems where NDIM=NBC and where NINT=0.
Then, generically, one free problem parameter is required for computing a solution family. For
example, in demo exp, we have NDIM=NBC=2, NINT=0. Thus NICP=1. Indeed, in this demo one
free parameter is designated, namely PAR(1).

More generally, for boundary value problems with integral constraints, the generic number of
free parameters is NBC + NINT−NDIM +1. For example, in demo lin, we have NDIM=2, NBC=2,
and NINT=1. Thus NICP=2. Indeed, in this demo two free parameters are designated, namely
PAR(1) and PAR(3).

10.7.7 Boundary value folds.

To continue a locus of folds for a general boundary value problem with integral constraints, set
NICP=NBC+NINT−NDIM+2, and specify this number of parameter indices to designate the free
parameters.
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10.7.8 Optimization problems.

In algebraic optimization problems one must set ICP(1)=10, as AUTO uses PAR(10) as principal
continuation parameter to monitor the value of the objective function. Furthermore, one must
designate one free equation parameter in ICP(2). Thus, NICP=2 in the first run.

Folds with respect to PAR(10) correspond to extrema of the objective function. In a second
run one can restart at such a fold, with an additional free equation parameter specified in ICP(3).
Thus, NICP=3 in the second run.

The above procedure can be repeated. For example, folds from the second run can be
continued in a third run with three equation parameters specified in addition to PAR(10). Thus,
NICP=4 in the third run.

For a simple example see demo opt, where a four-parameter extremum is located. Note
that NICP=5 in each of the four constants-files of this demo, with the indices of PAR(10) and
PAR(1)-PAR(4) specified in ICP. Thus, in the first three runs, there are overspecified parameters.
However, AUTO will always use the correct number of parameters. Although the overspecified
parameters will be printed, their values will remain fixed.

10.7.9 Internal free parameters.

The actual continuation scheme in AUTO may use additional free parameters that are automati-
cally added. The simplest example is the computation of periodic solutions and rotations, where
AUTO automatically adds the period, if not specified. The computation of loci of folds, Hopf
bifurcations, and period-doublings also requires additional internal continuation parameters.
These will be automatically added, and their indices will be greater than 10.

10.7.10 Parameter overspecification.

The number of specified parameter indices is allowed to be be greater than the generic number.
In such case there will be “overspecified” parameters, whose values will appear in the screen
and fort.7 output, but which are not part of the continuation process. A simple example is
provided by demo opt, where the first three runs have overspecified parameters whose values,
although constant, are printed.

There is, however, a more useful application of parameter overspecification. In the user-
supplied routine PVLS one can define solution measures and assign these to otherwise unused
parameters. Such parameters can then be overspecified, in order to print them on the screen and
in the fort.7 output. It is important to note that such overspecified parameters must appear
at the end of the ICP list, as they cannot be used as true continuation parameters.

For an example of using parameter overspecification for printing user-defined solution mea-
sures, see demo pvl. This is a boundary value problem (Bratu’s equation) which has only one
true continuation parameter, namely PAR(1). Three solution measures are defined in the rou-
tine PVLS, namely, the L2-norm of the first solution component, the minimum of the second
component, and the left boundary value of the second component. These solution measures
are assigned to PAR(2), PAR(3), and PAR(4), respectively. In the constants-file c.pvl we have
NICP=4, with PAR(1)-PAR(4) specified as parameters. Thus, in this example, PAR(2)-PAR(4)
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are overspecified. Note that PAR(1) must appear first in the ICP list; the other parameters
cannot be used as true continuation parameters.

10.8 Computation Constants.

10.8.1 ILP

- ILP=0 : No detection of folds. This choice is recommended.

- ILP=1 : Detection of folds. To be used if subsequent fold continuation is intended.

10.8.2 ISP

This constant controls the detection of branch points, period-doubling bifurcations, and torus
bifurcations.

- ISP=0 : This setting disables the detection of branch points, period-doubling bifurcations,
and torus bifurcations and the computation of Floquet multipliers.

- ISP=1 : Branch points are detected for algebraic equations, but not for periodic solutions
and boundary value problems. Period-doubling bifurcations and torus bifurcations are not
located either. However, Floquet multipliers are computed.

- ISP=2 : This setting enables the detection of all special solutions. For periodic solutions
and rotations, the choice ISP=2 should be used with care, due to potential inaccuracy in
the computation of the linearized Poincaré map and possible rapid variation of the Floquet
multipliers. The linearized Poincaré map always has a multiplier z = 1. If this multiplier
becomes inaccurate then the automatic detection of secondary periodic bifurcations will
be discontinued and a warning message will be printed in fort.9. See also Section 11.4.

- ISP=3 : Branch points will be detected, but AUTO will not monitor the Floquet multipli-
ers. Period-doubling and torus bifurcations will go undetected. This option is useful for
certain problems with non-generic Floquet behavior.

10.8.3 ISW

This constant controls branch switching at branch points for the case of differential equations.
Note that branch switching is automatic for algebraic equations.

- ISW=1 : This is the normal value of ISW.

- ISW=−1 : If IRS is the label of a branch point or a period-doubling bifurcation then branch
switching will be done. For period doubling bifurcations it is recommended that NTST be
increased. For examples see Run 2 and Run 3 of demo lor, where branch switching is
done at period-doubling bifurcations, and Run 2 and Run 3 of demo bvp, where branch
switching is done at a transcritical branch point.
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- ISW=2 : If IRS is the label of a fold, a Hopf bifurcation point, or a period-doubling or torus
bifurcation then a locus of such points will be computed. An additional free parameter
must be specified for such continuations; see also Section 10.7.

10.8.4 MXBF

This constant, which is effective for algebraic problems only, sets the maximum number of bifur-
cations to be treated. Additional branch points will be noted, but the corresponding bifurcating
families will not be computed. If MXBF is positive then the bifurcating families of the first MXBF
branch points will be traced out in both directions. If MXBF is negative then the bifurcating
families of the first | MXBF | branch points will be traced out in only one direction.

10.8.5 IRS

This constant sets the label of the solution where the computation is to be restarted.

- IRS=0 : This setting is typically used in the first run of a new problem. In this case a
starting solution must be defined in the user-supplied routine STPNT. For representative
examples of analytical starting solutions see demos ab and frc. For starting from unlabeled
numerical data see the @fc command (Section 5) and demos lor and pen.

- IRS>0 : Restart the computation at the previously computed solution with label IRS. This
solution is normally expected to be in the current data-file s.xxx; see also the @r and @R
commands in Section 5. Various AUTO-constants can be modified when restarting.

10.8.6 IPS

This constant defines the problem type :

- IPS=0 : An algebraic bifurcation problem. Hopf bifurcations will not be detected and
stability properties will not be indicated in the fort.7 output-file.

- IPS=1 : Stationary solutions of ODEs with detection of Hopf bifurcations. The sign of
PT, the point number, in fort.7 is used to indicate stability : − is stable , + is unstable.
(Demo ab.)

- IPS=−1 : Fixed points of the discrete dynamical system u(k+1) = f(u(k), p), with detection
of Hopf bifurcations. The sign of PT in fort.7 indicates stability : − is stable , + is
unstable. (Demo dd2.)

- IPS=−2 : Time integration using implicit Euler. The AUTO-constants DS, DSMIN, DSMAX,
and ITNW, NWTN control the stepsize. In fact, pseudo-arclength is used for “continuation in
time”. Note that the time discretization is only first order accurate, so that results should
be carefully interpreted. Indeed, this option has been included primarily for the detection
of stationary solutions, which can then be entered in the user-supplied routine STPNT.
(Demo ivp.)
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- IPS=2 : Computation of periodic solutions. Starting data can be a Hopf bifurcation
point (Run 2 of demo ab), a periodic orbit from a previous run (Run 4 of demo pp2), an
analytically known periodic orbit (Run 1 of demo frc), or a numerically known periodic
orbit (Demo lor). The sign of PT in fort.7 is used to indicate stability : − is stable , +
is unstable or unknown.

- IPS=4 : A boundary value problem. Boundary conditions must be specified in the user-
supplied routine BCND and integral constraints in ICND. The AUTO-constants NBC and
NINT must be given correct values. (Demos exp, int, kar.)

- IPS=5 : Algebraic optimization problems. The objective function must be specified in the
user-supplied routine FOPT. (Demo opt.)

- IPS=7 : A boundary value problem with computation of Floquet multipliers. This is a
very special option; for most boundary value problems one should use IPS=4. Boundary
conditions must be specified in the user-supplied routine BCND and integral constraints in
ICND. The AUTO-constants NBC and NINT must be given correct values.

- IPS=9 : This option is used in connection with the HomCont algorithms described in
Chapters 20-26 for the detection and continuation of homoclinic bifurcations.
(Demos san, mtn, kpr, cir, she, rev.)

- IPS=11 : Spatially uniform solutions of a system of parabolic PDEs, with detection of
traveling wave bifurcations. The user need only define the nonlinearity (in routine FUNC),
initialize the wave speed in PAR(10), initialize the diffusion constants in PAR(15,16,· · · ),
and set a free equation parameter in ICP(1). (Run 2 of demo wav.)

- IPS=12 : Continuation of traveling wave solutions to a system of parabolic PDEs. Starting
data can be a Hopf bifurcation point from a previous run with IPS=11, or a traveling wave
from a previous run with IPS=12. (Run 3 and Run 4 of demo wav.)

- IPS=14 : Time evolution for a system of parabolic PDEs subject to periodic boundary
conditions. Starting data may be solutions from a previous run with IPS=12 or 14.
Starting data can also be specified in STPNT, in which case the wave length must be
specified in PAR(11), and the diffusion constants in PAR(15,16,· · · ). AUTO uses PAR(14)
for the time variable. DS, DSMIN, and DSMAX govern the pseudo-arclength continuation in
the space-time variables. Note that the time discretization is only first order accurate, so
that results should be carefully interpreted. Indeed, this option is mainly intended for the
detection of stationary waves. (Run 5 of demo wav.)

- IPS=15 : Optimization of periodic solutions. The integrand of the objective functional
must be specified in the user supplied routine FOPT. Only PAR(1-9) should be used for
problem parameters. PAR(10) is the value of the objective functional, PAR(11) the period,
PAR(12) the norm of the adjoint variables, PAR(14) and PAR(15) are internal optimality
variables. PAR(21-29) and PAR(31) are used to monitor the optimality functionals asso-
ciated with the problem parameters and the period. Computations can be started at a
solution computed with IPS=2 or IPS=15. For a detailed example see demo ops.
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- IPS=16 : This option is similar to IPS=14, except that the user supplies the boundary
conditions. Thus this option can be used for time-integration of parabolic systems subject
to user-defined boundary conditions. For examples see the first runs of demos pd1, pd2, and
bru. Note that the space-derivatives of the initial conditions must also be supplied in the
user supplied routine STPNT. The initial conditions must satisfy the boundary conditions.
This option is mainly intended for the detecting stationary solutions.

- IPS=17 : This option can be used to continue stationary solutions of parabolic systems
obtained from an evolution run with IPS=16. For examples see the second runs of demos
pd1 and pd2.

10.9 Output Control.

10.9.1 NPR

This constant can be used to regularly write fort.8 plotting and restart data. IF NPR>0 then
such output is written every NPR steps. IF NPR=0 or if NPR≥NMX then no such output is written.
Note that special solutions, such as branch points, folds, end points, etc., are always written in
fort.8. Furthermore, one can specify parameter values where plotting and restart data is to be
written; see Section 10.9.4. For these reasons, and to limit the output volume, it is recommended
that NPR output be kept to a minimum.

10.9.2 IID

This constant controls the amount of diagnostic output printed in fort.9 : the greater IID the
more detailed the diagnostic output.

- IID=0 : Minimal diagnostic output. This setting is not recommended.

- IID=2 : Regular diagnostic output. This is the recommended value of IID.

- IID=3 : This setting gives additional diagnostic output for algebraic equations, namely the
Jacobian and the residual vector at the starting point. This information, which is printed
at the beginning of fort.9, is useful for verifying whether the starting solution in STPNT

is indeed a solution.

- IID=4 : This setting gives additional diagnostic output for differential equations, namely
the reduced system and the associated residual vector. This information is printed for ev-
ery step and for every Newton iteration, and should normally be suppressed. In particular
it can be used to verify whether the starting solution is indeed a solution. For this purpose,
the stepsize DS should be small, and one should look at the residuals printed in the fort.9
output-file. (Note that the first residual vector printed in fort.9 may be identically zero,
as it may correspond to the computation of the starting direction. Look at the second
residual vector in such case.) This residual vector has dimension NDIM+NBC+NINT+1,
which accounts for the NDIM differential equations, the NBC boundary conditions, the NINT
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user-defined integral constraints, and the pseudo-arclength equation. For proper inter-
pretations of these data one may want to refer to the solution algorithm for solving the
collocation system, as described in Doedel, Keller & Kernévez (1991b).

- IID=5 : This setting gives very extensive diagnostic output for differential equations,
namely, debug output from the linear equation solver. This setting should not normally
be used as it may result in a huge fort.9 file.

10.9.3 IPLT

This constant allows redefinition of the principal solution measure, which is printed as the second
(real) column in the screen output and in the fort.7 output-file :

- If IPLT = 0 then the L2-norm is printed. Most demos use this setting. For algebraic
problems, the standard definition of L2-norm is used. For differential equations, the L2-
norm is defined as

√

√

√

√

∫ 1

0

NDIM
∑

k=1

Uk(x)2 dx .

Note that the interval of integration is [0, 1], the standard interval used by AUTO. For
periodic solutions the independent variable is transformed to range from 0 to 1, before the
norm is computed. The AUTO-constants THL(*) and THU(*) (see Section 10.5.5 and
Section 10.5.6) affect the definition of the L2-norm.

- If 0 < IPLT ≤ NDIM then the maximum of the IPLT’th solution component is printed.

- If −NDIM ≤ IPLT <0 then the minimum of the IPLT’th solution component is printed.
(Demo fsh.)

- If NDIM < IPLT ≤ 2*NDIM then the integral of the (IPLT−NDIM)’th solution component is
printed. (Demos exp, lor.)

- If 2*NDIM < IPLT ≤ 3*NDIM then the L2-norm of the (IPLT−NDIM)’th solution component
is printed. (Demo frc.)

Note that for algebraic problems the maximum and the minimum are identical. Also, for
ODEs the maximum and the minimum of a solution component are generally much less accurate
than the L2-norm and component integrals. Note also that the routine PVLS provides a second,
more general way of defining solution measures; see Section 10.7.10.

10.9.4 NUZR

This constant allows the setting of parameter values at which labeled plotting and restart infor-
mation is to be written in the fort.8 output-file. Optionally, it also allows the computation to
terminate at such a point.

- Set NUZR=0 if no such output is needed. Many demos use this setting.
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- If NUZR>0 then one must enter NUZR pairs, Parameter-Index Parameter-Value , with
each pair on a separate line, to designate the parameters and the parameter values at
which output is to be written. For examples see demos exp, int, and fsh.

- If such a parameter index is preceded by a minus sign then the computation will terminate
at such a solution point. (Demos pen and bru.)

Note that fort.8 output can also be written at selected values of overspecified parameters.
For an example see demo pvl. For details on overspecified parameters see Section 10.7.10.
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10.10 Quick reference

NDIM Problem dimension
IPS Problem type; 0=AE, 1=FP(ODEs), -1=FP(maps), 2=PO, -2=IVP,

4=BVP, 7=BVP with Floquet multipliers, 5=algebraic optimization
problem, 15=optimization of periodic solutions

IRS Start solution label
ILP Fold detection; 1=on, 0=off
NICP Continuation parameters
NTST # mesh intervals
NCOL # collocation points
IAD Mesh adaption every IAD steps; 0=off
ISP Bifurcation detection; 0=off, 1=BP(FP), 3=BP(PO,BVP), 2=all
ISW Branch switching; 1=normal, -1=switch branch (BP, HB, PD),

2=switch to two-parameter continuation (LP, HB, TR)
IPLT Select principal solution measure
NBC # boundary conditions
NINT # integral conditions
NMX Maximum number of steps
RL0, RL1 Parameter interval RL0 ≤ λ ≤ RL1
A0, A1 Interval of principal solution measure A0 ≤ ‖ · ‖ ≤ A1
NPR Print and save restart data every NPR steps
MXBF Automatic branch switching for the first MXBF bifurcation

points if IPS=0, 1
IID Control diagnostic output; 1=little, 2=normal, 4=extensive
ITMX Maximum # of iterations for locating special solutions/points
ITNW Maximum # of correction steps
NWTN Corrector uses full newton for NWTN steps
JAC User defines derivatives; 0=no, 1=yes
EPSL Convergence criterion for equation parameters
EPSU Convergence criterion for solution components
EPSS Convergence criterion for special solutions/points
DS Start step size
DSMIN, DSMAX Step size interval DSMIN ≤ h ≤ DSMAX
IADS Step size adaption every IADS steps; 0=off
NTHL, NTHU list of parameter and solution weights
NUZR list of values for user defined output
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Chapter 11

Notes on Using AUTO.

11.1 Restrictions on the Use of PAR.

The array PAR in the user-supplied routines is available for equation parameters that the user
wants to vary at some point in the computations. In any particular computation the free
parameter(s) must be designated in ICP; see Section 10.7. The following restrictions apply :

- The maximum number of parameters, NPARX in auto/07p/include/auto.h, has pre-
defined value NPARX=36. NPARX should not normally be increased and it should never
be decreased. Any increase of NPARX must be followed by recompilation of AUTO.

- Generally one should only use PAR(1)-PAR(9) for equation parameters, as AUTO may
need the other components internally.

11.2 Efficiency.

In AUTO, efficiency has at times been sacrificed for generality of programming. This applies in
particular to computations in which AUTO generates an extended system, for example, com-
putations with ISW=2. However, the user has significant control over computational efficiency,
in particular through judicious choice of the AUTO-constants DS, DSMIN, and DSMAX, and, for
ODEs, NTST and NCOL. Initial experimentation normally suggests appropriate values.

Slowly varying solutions to ODEs can often be computed with remarkably small values of
NTST and NCOL, for example, NTST=5, NCOL=2. Generally, however, it is recommended to set
NCOL=4, and then to use the “smallest” value of NTST that maintains convergence.

The choice of the pseudo-arclength stepsize parameters DS, DSMIN, and DSMAX is highly prob-
lem dependent. Generally, DSMIN should not be taken too small, in order to prevent excessive
step refinement in case of non-convergence. It should also not be too large, in order to avoid
instant non-convergence. DSMAX should be sufficiently large, in order to reduce computation
time and amount of output data. On the other hand, it should be sufficiently small, in order to
prevent stepping over bifurcations without detecting them. For a given equation, appropriate
values of these constants can normally be found after some initial experimentation.

The constants ITNW, NWTN, THL, EPSU, EPSL, EPSS also affect efficiency. Understanding their
significance is therefore useful; see Section 10.4 and Section 10.5. Finally, it is recommended
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that initial computations be done with ILP=0; no fold detection; and ISP=1; no bifurcation
detection for ODEs.

11.3 Correctness of Results.

AUTO-computed solutions to ODEs are almost always structurally correct, because the mesh
adaption strategy, if IAD>0, safeguards to some extent against spurious solutions. If these do
occur, possibly near infinite-period orbits, the unusual appearance of the solution family typically
serves as a warning. Repeating the computation with increased NTST is then recommended.

11.4 Bifurcation Points and Folds.

It is recommended that the detection of folds and bifurcation points be initially disabled. For
example, if an equation has a “vertical” solution family then AUTO may try to locate one fold
after another.

Generally, degenerate bifurcations cannot be detected. Furthermore, bifurcations that are
close to each other may not be noticed when the pseudo-arclength step size is not sufficiently
small. Hopf bifurcation points may go unnoticed if no clear crossing of the imaginary axis takes
place. This may happen when there are other real or complex eigenvalues near the imaginary
axis and when the pseudo-arclength step is large compared to the rate of change of the critical
eigenvalue pair. A typical case is a Hopf bifurcation close to a fold. Similarly, Hopf bifurcations
may go undetected if switching from real to complex conjugate, followed by crossing of the
imaginary axis, occurs rapidly with respect to the pseudo-arclength step size. Secondary periodic
bifurcations may not be detected for similar reasons. In case of doubt, carefully inspect the
contents of the diagnostics file fort.9.

11.5 Floquet Multipliers.

AUTO extracts an approximation to the linearized Poincaré map from the Jacobian of the
linearized collocation system that arises in Newton’s method. This procedure is very efficient;
the map is computed at negligible extra cost. The linear equations solver of AUTO is described
in Doedel, Keller & Kernévez (1991b). The actual Floquet multiplier solver was written by
Fairgrieve (1994). For a detailed description of the algorithm see Fairgrieve & Jepson (1991).

For periodic solutions, the exact linearized Poincaré map always has a multiplier z = 1.
A good accuracy check is to inspect this multiplier in the diagnostics output-file fort.9. If
this multiplier becomes inaccurate then the automatic detection of potential secondary periodic
bifurcations (if ISP=2) is discontinued and a warning is printed in fort.9. It is strongly
recommended that the contents of this file be habitually inspected, in particular to verify whether
solutions labeled as BP or TR (cf. Table 6.1) have indeed been correctly classified.
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11.6 Memory Requirements.

The run-time memory requirements depend on the values the user set in the constants file and
are roughly proportional to the value NTST×(NDIM×(NCOL+1)+NBC)×(NDIM×NCOL+NINT+1).
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Chapter 12

AUTO Demos : Tutorial.
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12.1 Introduction.

The directory auto/07p/demos has a large number of subdirectories, for example ab, pp2, exp,
etc., each containing all necessary files for certain illustrative calculations. Each subdirectory,
say xxx, corresponds to a particular equation and contains one equations-file xxx.{f90,f,c}
and one or more constants-files c.xxx.i, one for each successive run of the demo. To see how
the equations have been programmed, inspect the equations-file. To understand in detail how
AUTO is instructed to carry out a particular task, inspect the appropriate constants-file. In
this chapter we describe the tutorial demo cusp in detail. A brief description of other demos is
given in later chapters.

12.2 cusp : A Tutorial Demo.

This demo illustrates the computation of stationary solutions, locating saddle-node bifurcations
of these solutions, and the continuation of a saddle-node bifurcation in two parameters.
The cusp normal form equation is given by

ẋ = µ+ λx− x3. (12.1)

12.3 Copying the Demo Files.

The commands listed in Table 12.1 will copy the demo files to your work directory.

Unix-COMMAND ACTION
auto start the AUTO-07p Command Line User Interface

AUTO -COMMAND ACTION
cd go to main directory (or other directory).
! mkdir cusp create an empty work directory. Note: the

’ !’ is used to signify a command which is
sent to the shell.

cd cusp change to the work directory.
demo(’cusp’) copy the demo files to the work directory.

Table 12.1: Copying the demo cusp files.

Typing ls reveals the existence of 5 files:

1. cusp.f90 : This file contains the differential equations and the initial values. If you
inspect it, you will see that only two routines are used. The subroutine FUNC specifies the
actual differential equation. The routine STPNT gives AUTO the initial values of PAR(1)= λ
and PAR(2)= µ, which are 1.0 and 0.0, and the initial value of x, which is 0. For your own
models you would generally copy another equation file and then only change the pieces
that actually define the equation.
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2. c.cusp : The initial computational constants are stored in this file. Most importantly,
you see that the dimension of the problem (NDIM) is set to 1, and the problem type IPS

is set to 1 to specify continuation of a stationary solution. The constants given by ICP

specify the parameters that are used for the continuation. In this case these are 2 for
µ and 1 for λ. Since initially we only really continue in one parameter (µ), the second
parameter λ is overspecified. Another important constant is the initial step size DS: as it
is positive, we initally continue in the positive µ direction.

3. c.cusp.1 : A copy of c.cusp, for convenience.

4. cusp.auto : A script with Python CLUI commands that steer the calculation.

5. plaut04.rc : A file that contains default settings for the 3-dimensional plotting tool
PLAUT04.

12.4 Executing all Runs Automatically.

To execute all prepared runs of demo cusp, simply type the command given in Table 12.2.

AUTO -COMMAND ACTION
demofile(’cusp.auto’) execute all runs of demo ab interactively

Table 12.2: Executing all runs of demo cusp.

The command in Table 12.2 begins a tutorial which will proceed one step each time the user
presses a key. Each step consists of a single AUTO command preceded by instructions as to
what action the command performs. The tutorial script cusp.auto performs the demo by reading
in a single AUTO constants file and then interactively modifying it to perform each of the demo.
The essential commands in cusp.auto are given in Table 12.4.

Note that there are four separate runs, where each run command (r is an abbreviation)
performs a run. In the first run, a branch of stationary solutions is traced out. Along it, one
fold (LP) (limit point, or in this case, a saddle-node bifurcation) is located. The free parameter
is µ. The other parameter λ remains fixed in this run. Note also that only special, labeled
solution points are printed on the screen. More detailed results are saved in the data-files b.mu,
s.mu, and d.mu.

The second run does the same thing but now in the negative direction of µ, i.e., backwards
instead of forwards. The backwards continuation is appended to the forwards continuation in
the data-files. Afterwards we perform a relabelling to make sure that we have unique labels for
each special solution.

The results are then plotted on the screen. Pressing the enter key at the command line
causes an automatic µ vs. x display that shows the two fold points at labels 2 and 7.

In the third run, the fold detected in the first run is followed in the two parameters µ and λ.
The commands that accomplish this must change a few constants of the constant file: the first
constant is ISW, that must be set to 2 to cause a two-parameter continuation.
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The second constant is the starting label for the file s.mu that we are starting from. We
know that 2 is a good label. However, we did not know this number in advance, and moreover,
in sensitive cases, it can be different on different computer types. Another way to specify the
starting label is to use the splabs Python function: in this case splabs(’mu’,’LP’) returns
the list of ’LP’ labels for b.mu, and s.mu, and so the first one, splabs(’mu’,’LP’)[0] denotes
label 2.

The fourth run continues this branch in opposite direction. The detailed results of these
continuations are accumulated in the data-files b.cusp, s.cusp, and d.cusp. Finally, a plot of
the cusp is produced.

The numerical results are given below in somewhat abbreviated form. Some differences in
output are to be expected on different machines. This does not mean that the results have
different accuracy, but simply that arithmetic differences have accumulated from step to step,
possibly leading to different step size decisions.

Next, reset the work directory, by typing the command given in Table 12.3.

AUTO -COMMAND ACTION
cl() remove temporary files of demo cusp
dl(’mu’) remove ’mu’ data-files of demo cusp
dl(’cusp’) remove ’cusp’ data-files of demo cusp

Table 12.3: Cleaning the demo cusp work directory.

# Run forwards

BR PT TY LAB PAR(2) L2-NORM U(1) PAR(1)

1 1 EP 1 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

1 14 LP 2 3.84900E-01 5.77360E-01 -5.77360E-01 1.00000E+00

1 20 3 1.26582E-01 9.29410E-01 -9.29410E-01 1.00000E+00

1 40 4 -1.38347E+00 1.40803E+00 -1.40803E+00 1.00000E+00

1 47 EP 5 -2.07212E+00 1.53340E+00 -1.53340E+00 1.00000E+00

# Run backwards

BR PT TY LAB PAR(2) L2-NORM U(1) PAR(1)

1 1 EP 1 0.00000E+00 0.00000E+00 0.00000E+00 1.00000E+00

1 14 LP 2 -3.84900E-01 5.77360E-01 5.77360E-01 1.00000E+00

1 20 3 -1.26582E-01 9.29410E-01 9.29410E-01 1.00000E+00

1 40 4 1.38347E+00 1.40803E+00 1.40803E+00 1.00000E+00

1 47 EP 5 2.07212E+00 1.53340E+00 1.53340E+00 1.00000E+00

# Forward continuation of the first fold in two parameters

BR PT TY LAB PAR(2) L2-NORM U(1) PAR(1)

2 20 11 5.42543E-02 3.00470E-01 -3.00470E-01 2.70847E-01

2 40 12 -9.99228E-02 3.68308E-01 3.68308E-01 4.06953E-01
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2 60 13 -5.89228E-01 6.65403E-01 6.65403E-01 1.32828E+00

2 80 14 -1.71622E+00 9.50271E-01 9.50271E-01 2.70904E+00

2 85 EP 15 -2.06374E+00 1.01051E+00 1.01051E+00 3.06341E+00

# Backward continuation of the fold in two parameters

BR PT TY LAB PAR(2) L2-NORM U(1) PAR(1)

2 20 11 1.09209E+00 8.17354E-01 -8.17354E-01 2.00420E+00

2 34 EP 12 2.02776E+00 1.00461E+00 -1.00461E+00 3.02770E+00

The CLUI was used to generate the constants file at runtime. In the example below, the
constant file c.cusp will be read in, and the CLUI will be used to make the appropriate changes
to perform the calculation.

AUTO -COMMAND ACTION
ld(’cusp’) load the problem definition cusp
r(sv=’mu’) execute the run and save the results

in the files b.mu, s.mu, and d.mu
r(DS=’-’,ap=’mu’) execute the run backwards and

append the results to the above files
rl(’mu’) relabel solutions in b.mu and s.mu
ld(s=’mu’,ISW=2,IRS=splabs(’mu’,’LP’)[0]) use s.mu as the solution file to start from,

change ISW to 2,
and change IRS to select the first fold in b.mu.

r(sv=’cusp’) execute the third run of demo cusp
r(DS=’-’,ap=’cusp’) execute the fourth run of demo cusp

Table 12.4: Selected runs of demo ab.

12.5 Plotting the Results with AUTO .

The bifurcation diagram computed in the runs above was stored in the files b.mu and b.cusp,
while each labeled solution is fully stored in s.mu and s.cusp. To use AUTO to graphically
inspect these data-files. type the AUTO -command given in Table 12.5. The saved plots are
shown in Figure 12.1 and in Figure 12.2.

Figure 12.1 shows the bifurcation diagrams for the first run, and Figure 12.2 for the second
run.

The plotting window consists of a menubar at the top, a plotting area, and a control panel
with four control widgets at the bottom. By default the first two columns in the bifurcation
diagram output are plotted against each other. To obtain a µ versus x bifurcation diagram you
need to plot column 0 versus column 1. You can do that by changing the “Y” box to say “[2]”,
either by typing it there, by using the menu obtained by clicking the downwards facing triangle
or by using a scripted command as used in cusp.auto. You can also change the mode of the
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plotting tool from “bifurcation” to “solution”. This is accomplished by clicking on the widget
marked “Type” on the bottom control panel and setting it from “bifurcation” to “solution”. In
the plotting window will appear a plot of the first labeled solution, in this case just a point. You
can plot all points by changing the “Label” to “[1,2,3,4,5,6,7,8,9,10]”.

The plotting tool can also be used to create Postscript files from plots by selecting the “File”
on the menubar and then selecting the “Save Postscript...” from the drop down menu. This
will bring up a dialog into which the user can enter the filename of the postscript file to save
the plot in. Further information on the plotting tool can be found in Section 4.11.

AUTO -COMMAND ACTION
plot("mu") run AUTO to graph the contents of b.mu and s.mu;

Table 12.5: Command for plotting the files b.ab and s.ab.

12.6 Plotting the Results with AUTO in 3D.

Whilst not very useful for this simple example, you can also plot your results in 3D, using the
plot3 command (PLAUT04), for example plot3(’mu’). Unlike the 2D tool, this shows the
stable and unstable parts: blue is stable, and red is unstable. You can also spin the bifurcation
diagram around and zoom in using the mouse.

12.7 Exporting the Results for different plotters.

It is often useful to use other plotting programs or general-purpose tools to work with AUTO’s
data. The “writeRawFilename” method (see also the CLUI chapter) can be used for this. In
this tutorial we can for instance export the bifurcation diagram using
dg(’cusp’).writeRawFilename(’cusp.dat’) , and then use the command plot ’cusp.dat’

using 1:4 wi li to plot the bifurcation diagram in GNUPlot.
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Figure 12.1: The first bifurcation diagram of demo cusp.
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Figure 12.2: The second bifurcation diagram of demo cusp.
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12.8 ab : A Programmed Demo.

This demo illustrates the computation of stationary solutions, Hopf bifurcations and periodic
solutions. The equations, that model an A → B reaction, are those from Uppal, Ray & Poore
(1974), namely

u′1 = −u1 + p1(1 − u1)e
u2 ,

u′2 = −u2 + p1p2(1 − u1)e
u2 − p3u2.

(12.2)

This demo is full scripted, see Table 12.6.

AUTO -COMMAND ACTION
! mkdir ab create an empty work directory
cd ab change directory
demo(’ab’) copy the demo files to the work directory
execfile(’ab.auto’) run the demo

Table 12.6: Commands for running demo ab.

If you look at the file ab.auto you see that the script computes a stationary solution family
for certain values of p2, and that a periodic orbit family is computed for each Hopf bifurcation
that was found in the stationary solution families.
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Chapter 13

AUTO Demos : Fixed points.

13.1 enz : Stationary Solutions of an Enzyme Model.

The equations, that model a two-compartment enzyme system (Kernévez (1980)), are given by

s′1 = (s0 − s1) + (s2 − s1) − ρR(s1),
s′2 = (s0 + µ− s2) + (s1 − s2) − ρR(s2),

(13.1)

where
R(s) =

s

1 + s+ κs2
.

The free parameter is s0. Other parameters are fixed. This equation is also considered in Doedel,
Keller & Kernévez (1991a).

AUTO -COMMAND ACTION
! mkdir enz create an empty work directory
cd enz change directory
demo(’enz’) copy the demo files to the work directory
ld(’enz’) load the problem definition
run(c=’enz.1’) compute stationary solution families
sv(’enz’) save output-files as b.enz, s.enz, d.enz

Table 13.1: Commands for running demo enz.
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13.2 dd2 : Fixed Points of a Discrete Dynamical System.

This demo illustrates the computation of a solution family and its bifurcating families for a
discrete dynamical system. Also illustrated is the continuation of Naimark-Sacker (or Hopf)
bifurcations The equations, a discrete predator-prey system, are

uk+1
1 = p1u

k
1(1 − uk

1) − p2u
k
1u

k
2,

uk+1
2 = (1 − p3)u

k
2 + p2u

k
1u

k
2.

(13.2)

In the first run p1 is free. In the second run, both p1 and p2 are free. The remaining equation
parameter, p3, is fixed in both runs.

AUTO -COMMAND ACTION
! mkdir dd2 create an empty work directory
cd dd2 change directory
demo(’dd2’) copy the demo files to the work directory
ld(’dd2’) load the problem definition
run(c=’dd2.1’) 1st run; fixed point solution branches
sv(’dd2’) save output-files as b.dd2, s.dd2, d.dd2
run(c=’dd2.2’,s=’dd2’) 2nd run; a locus of Naimark-Sacker bifur-

cations. Constants changed : IRS, ISW

sv(’ns’) save output-files as b.ns, s.ns, d.ns

Table 13.2: Commands for running demo dd2.
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Chapter 14

AUTO Demos : Periodic solutions.
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14.1 lrz : The Lorenz Equations.

This demo computes two symmetric homoclinic orbits in the Lorenz equations

u′1 = p3(u2 − u1),
u′2 = p1u1 − u2 − u1u3,
u′3 = u1u2 − p2u3.

(14.1)

Here p1 is the free parameter, and p2 = 8/3, p3 = 10. The two homoclinic orbits correspond to
the final, large period orbits on the two periodic solution families.

AUTO -COMMAND ACTION
! mkdir lrz create an empty work directory
cd lrz change directory
demo(’lrz’) copy the demo files to the work directory
ld(’lrz’) load the problem definition
run(c=’lrz.1’) compute stationary solutions
sv(’lrz’) save output-files as b.lrz, s.lrz, d.lrz
run(c=’lrz.2’,s=’lrz’) compute periodic solutions; the final orbit

is near-homoclinic. Constants changed :
IPS, IRS, NICP, ICP, NMX, NPR, DS

ap(’lrz’) append the output-files to b.lrz, s.lrz, d.lrz
run(c=’lrz.3’,s=’lrz’) compute the symmetric periodic solution

family. Constants changed : IRS

ap(’lrz’) append the output-files to b.lrz, s.lrz, d.lrz

Table 14.1: Commands for running demo lrz.
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14.2 abc : The A → B → C Reaction.

This demo illustrates the computation of stationary solutions, Hopf bifurcations and periodic
solutions in the A → B → C reaction (Doedel & Heinemann (1983)).

u′1 = −u1 + p1(1 − u1)e
u3 ,

u′2 = −u2 + p1e
u3(1 − u1 − p5u2),

u′3 = −u3 − p3u3 + p1p4e
u3(1 − u1 + p2p5u2),

(14.2)

with p2 = 1, p3 = 1.55, p4 = 8, and p5 = 0.04. The free parameter is p1.
The equations, as programmed in the equations-file abc.f, appear in Table 14.2. The starting

point, an equilibrium of the equations, is also defined in the equations-file abc.f, as shown in
Table 14.3. (The equations-file abc.f also contains the skeletons of some other routines, which
must be supplied, but which are not used in this application.)

In the constants-file (c.abc.1) for the first run, as shown in Table 14.4, we note the following:

- IPS=1 : a family of stationary solutions is computed.

- IRS=0 : the starting point defined in STPNT is to be used (see Table 14.3).

- ICP(1)=1 : the continuation parameter is PAR(1)

- NUZR=1 : there is one user output point, namely at PAR(1)=0.4. Moreover, since the
index (”-1”) in the last line of the constants-file c.abc.1 is negative, the calculation will
terminate when the calculation reaches the value PAR(1)=0.4..

In the constants-file (c.abc.2) for the second run, as shown in Table 14.5, we note that:

- IPS=2 : a family of periodic solutions is computed.

- IRS=2 : the starting point is the solution with label 2, (a Hopf bifurcation point), to be
read from the solutions-file (here s.abc).

- NICP=2 : there are two continuation parameters (namely PAR(1), and the period, PAR(11)).

- NUZR=1 : there is one user output point, now at PAR(1)=0.25, where the calculation is to
terminate, since the index (”-1”) is negative.
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SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)

C ---------- ----

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION U(NDIM),PAR(*),F(NDIM)

C

X1=U(1)

X2=U(2)

X3=U(3)

C

D=PAR(1)

ALPHA=PAR(2)

BETA=PAR(3)

B=PAR(4)

S=PAR(5)

C

E=DEXP(X3)

X1C=1-X1

C

F(1)=-X1 + D*X1C*E

F(2)=-X2 + D*E*(X1C - S*X2)

F(3)=-X3 - BETA*X3 + D*B*E*(X1C + ALPHA*S*X2)

C

RETURN

END

Table 14.2: The equations for demo abc, as defined in the equations-file abc.f.
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SUBROUTINE STPNT(NDIM,U,PAR,T)

C ---------- -----

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION U(NDIM),PAR(*)

C

PAR(1)=0.0

PAR(2)=1.0

PAR(3)=1.55

PAR(4)=8.

PAR(5)=0.04

C

U(1)=0.

U(2)=0.

U(3)=0.

C

RETURN

END

Table 14.3: The starting solution for demo abc, as defined in the equations-file abc.f.

3 1 0 1 NDIM,IPS,IRS,ILP

1 1 NICP,(ICP(I),I=1,NICP)

15 4 3 1 1 0 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

130 0 0.4 0 25 NMX,RL0,RL1,A0,A1

200 10 2 8 5 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1e-7 1e-7 1e-4 EPSL,EPSU,EPSS

0.02 0.001 0.1 1 DS,DSMIN,DSMAX,IADS

1 NTHL,((I,THL(I)),I=1,NTHL)

11 0

0 NTHU,((I,THU(I)),I=1,NTHU)

1 NUZR,((I,UZR(I)),I=1,NUZR)

-1 0.4

Table 14.4: The constants-file c.abc.1 for Run 1 (stationary solutions) of demo abc.
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3 2 2 1 NDIM,IPS,IRS,ILP

2 1 11 NICP,(ICP(I),I=1,NICP)

25 4 3 1 1 0 0 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

200 0 0.4 0 25 NMX,RL0,RL1,A0,A1

200 10 2 8 5 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1e-7 1e-7 1e-4 EPSL,EPSU,EPSS

0.02 0.001 0.1 1 DS,DSMIN,DSMAX,IADS

1 NTHL,((I,THL(I)),I=1,NTHL)

11 0

0 NTHU,((I,THU(I)),I=1,NTHU)

1 NUZR,((I,UZR(I)),I=1,NUZR)

-1 0.25

Table 14.5: The constants-file c.abc.2 for Run 2 (periodic orbits) of demo abc.

COMMAND ACTION
mkdir abc create an empty work directory
cd abc change directory
@dm abc copy the demo files to the work directory
@R abc 1 compute the stationary solution family with four Hopf bifurcations
@sv abc save output-files as b.abc, s.abc, d.abc

@R abc 2 compute a family of periodic solutions from the first Hopf point
@ap abc append the output-files to b.abc, s.abc, d.abc

@R abc 3 compute a family of periodic solutions from the second Hopf point
@ap abc append the output-files to b.abc, s.abc, d.abc

@R abc 4 compute a family of periodic solutions from the third Hopf point
@ap abc append the output-files to b.abc, s.abc, d.abc

@R abc 5 compute a family of periodic solutions from the fourth Hopf point
@ap abc append the output-files to b.abc, s.abc, d.abc

Table 14.6: Unix Commands for running demo abc.
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ld(e=’abc’,c=’abc.1’)

run()

sv(’abc’)

ld(c=’abc.2’,s=’abc’)

run()

ap(’abc’)

ld(c=’abc.3’,s=’abc’)

run()

ap(’abc’)

ld(c=’abc.4’,s=’abc’)

run()

ap(’abc’)

ld(c=’abc.5’,s=’abc’)

run()

ap(’abc’)

Table 14.7: Python Commands for running demo abc.

ld(e=’abc’,c=’abc.1’)

run()

sv(’abc’)

ld(c=’abc.2’,s=’abc’)

data = sl(’abc’)

for solution in data:

if solution["Type name"] == "HB":

ch("IRS", solution["Label"])

run()

ap(’abc’)

Table 14.8: Python Program for running demo abc.

124



14.3 pp2 : A 2D Predator-Prey Model.

This demo illustrates the computation of families of stationary solutions, including bifurcating
stationary families, as well as the detection of a Hopf bifurcation. In the second run the family of
periodic solutions that emanates from the Hopf bifurcation is computed. This family terminates
in a heteroclinic orbit.

The equations, which model a predator-prey system with harvesting, are

u′1 = p2u1(1 − u1) − u1u2 − p1(1 − e−p3u1),
u′2 = −u2 + p4u1u2.

(14.3)

Here p1 is the principal continuation parameter, while p2 = p4 = 3 and p3 = 5, are fixed The
use of PLAUT is also illustrated. The saved plots are shown in Figure 14.1 and Figure 14.2.

COMMAND ACTION
mkdir pp2 create an empty work directory
cd pp2 change directory
@dm pp2 copy the demo files to the work directory
@R pp2 1 1st run, using constants-file c.pp2.1; stationary solutions
@sv pp2 save output-files as b.pp2, s.pp2, d.pp2

@R pp2 2 2nd run, using constants-file c.pp2.2; periodic solutions
@ap pp2 append output-files to b.pp2, s.pp2, d.pp2

Table 14.9: Commands for running demo pp2.
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AUTO-COMMAND ACTION
@p pp2 run PLAUT to graph the contents of b.pp2 and s.pp2;

PLAUT-COMMAND ACTION
d2 set convenient defaults
ax select axes
1 3 select real columns 1 and 3 in b.pp2

bd0 plot the bifurcation diagram; max u1 versus p1

d1 choose other default settings
bd get blow-up of current bifurcation diagram
0 1 -0.25 1 enter diagram limits
sav save plot (see Figure 14.1)
fig.1 upon prompt, enter a new file name, e.g., fig.1
cl clear the screen
2d enter 2D mode, for plotting labeled solutions
11 15 19 23 select these labeled orbits in s.pp2

d default orbit display; u1 versus time
1 3 select columns 1 and 3 in s.pp2

d display the orbits; u2 versus time
2 3 select columns 2 and 3 in s.pp2

d phase plane display; u2 versus u1

sav save plot (see Figure 14.2)
fig.2 upon prompt, enter a new file name
ex exit from 2D mode
end exit from PLAUT

Table 14.10: Plotting commands for demo pp2.
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Figure 14.1: The bifurcation diagram of demo pp2.
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Figure 14.2: The phase plot of solutions 11, 15, 19, and 23 in demo pp2.
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14.4 lor : Starting an Orbit from Numerical Data.

This demo illustrates how to start the computation of a family of periodic solutions from nu-
merical data obtained, for example, from an initial value solver. As an illustrative application
we consider the Lorenz equations

u′1 = p3(u2 − u1),
u′2 = p1u1 − u2 − u1u3,
u′3 = u1u2 − p2u3.

(14.4)

Numerical simulations with a simple initial value solver show the existence of a stable periodic
orbit when p1 = 280, p2 = 8/3, p3 = 10. Numerical data representing one complete periodic
oscillation are contained in the file lor.dat. Each row in lor.dat contains four real numbers,
namely, the time variable t, u1, u2 and u3. The correponding parameter values are defined in
the user-supplied subroutine stpnt. The AUTO -command us(’lor’) then converts the data
in lor.dat to a labeled AUTO solution (with label 1) in a new file s.dat. The mesh will be
suitably adapted to the solution, using the number of mesh intervals NTST and the number of
collocation point per mesh interval NCOL specified in the constants-file c.lor. (Note that the file
s.dat should be used for restart only. Do not append new output-files to s.dat, as the command
us(’lor’) only creates s.dat, with no corresponding b.dat.)

AUTO -COMMAND ACTION
! mkdir lor create an empty work directory
cd lor change directory
demo(’lor’) copy the demo files to the work directory
ld(’lor’) load the problem definition
us(’lor’) convert lor.dat to AUTO format in s.dat
run(c=’lor.1’,s=’dat’) compute a solution family, restart from s.dat
sv(’lor’) save output-files as b.lor, s.lor, d.lor
run(c=’lor.2’,s=’lor’) switch branches at a period-doubling de-

tected in the first run. Constants changed
: IRS, ISW, NTST

ap(’lor’) append the output-files to b.lor, s.lor, d.lor

Table 14.11: Commands for running demo lor.
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14.5 frc : A Periodically Forced System.

This demo illustrates the computation of periodic solutions to a periodically forced system. In
AUTO this can be done by adding a nonlinear oscillator with the desired periodic forcing as one
of the solution components. An example of such an oscillator is

x′ = x+ βy − x(x2 + y2),
y′ = −βx+ y − y(x2 + y2),

(14.5)

which has the asymptotically stable solution x = sin(βt), y = cos(βt). We couple this oscillator
to the Fitzhugh-Nagumo equations :

v′ =
(

F (v) − w
)

/ǫ,
w′ = v − dw −

(

b+ r sin(βt)
)

,
(14.6)

by replacing sin(βt) by x. Above, F (v) = v(v − a)(1 − v) and a, b, ǫ and d are fixed. The first
run is a homotopy from r = 0, where a solution is known analytically, to r = 0.2. Part of the
solution family with r = 0.2 and varying β is computed in the second run. For detailed results
see Alexander, Doedel & Othmer (1990).

AUTO -COMMAND ACTION
! mkdir frc create an empty work directory
cd frc change directory
demo(’frc’) copy the demo files to the work directory
ld(’frc’) load the problem definition
run(c=’frc.1’) homotopy to r = 0.2
sv(’0’) save output-files as b.0, s.0, d.0
run(c=’frc.2’,s=’0’) compute solution family; restart from

s.0. Constants changed : IRS, ICP(1),

NTST, NMX, DS, DSMAX

sv(’frc’) save output-files as b.frc, s.frc, d.frc

Table 14.12: Commands for running demo frc.
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14.6 ppp : Continuation of Hopf Bifurcations.

This demo illustrates the continuation of Hopf bifurcations in a 3-dimensional predator prey
model (Doedel (1984)). This curve contain branch points, where one locus of Hopf points
bifurcates from another locus of Hopf points. The equations are

u′1 = u1(1 − u1) − p4u1u2,
u′2 = −p2u2 + p4u1u2 − p5u2u3 − p1(1 − e−p6u2)
u′3 = −p3u3 + p5u2u3.

(14.7)

Here p2 = 1/4, p3 = 1/2, p4 = 3, p5 = 3, p6 = 5, and p1 is the free parameter. In the continuation
of Hopf points the parameter p4 is also free.

AUTO -COMMAND ACTION
! mkdir ppp create an empty work directory
cd ppp change directory
demo(’ppp’) copy the demo files to the work directory
ld(’ppp’) load the problem definition
run(c=’ppp.1’) compute stationary solutions; detect Hopf bifurcations
sv(’ppp’) save output-files as b.ppp, s.ppp, d.ppp
run(c=’ppp.2’,s=’ppp’) compute a family of periodic solutions.

Constants changed : IPS, IRS, ICP

ap(’ppp’) append the output-files to b.ppp, s.ppp, d.ppp
run(c=’ppp.3’,s=’ppp’) compute Hopf bifurcation curves
sv(’hb’) save the output-files as b.hb, s.hb, d.hb

Table 14.13: Commands for running demo ppp.
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14.7 plp : Fold Continuation for Periodic Solutions.

This demo, which corresponds to computations in Doedel, Keller & Kernévez (1991a), shows
how one can continue a fold on a family of periodic solution in two parameters. The calculation
of a locus of Hopf bifurcations is also included. The equations, that model a one-compartment
activator-inhibitor system (Kernévez (1980)), are given by

s′ = (s0 − s) − ρR(s, a),
a′ = α(a0 − a) − ρR(s, a),

(14.8)

where
R(s, a) =

sa

1 + s+ κs2
, κ > 0.

The free parameter is ρ. In the fold continuation s0 is also free.

AUTO -COMMAND ACTION
! mkdir plp create an empty work directory
cd plp change directory
demo(’plp’) copy the demo files to the work directory
ld(’plp’) load the problem definition
run(c=’plp.1’) 1st run; compute a stationary solution family and locate HBs
sv(’plp’) save output-files as b.plp, s.plp, d.plp
run(c=’plp.2’,s=’plp’) compute a family of periodic solutions and

locate a fold. Constants changed : IPS,

IRS, NMX

ap(’plp’) append output-files to b.plp, s.plp, d.plp
run(c=’plp.3’,s=’plp’) Compute a locus of Hopf bifurcation

points. Constants changed : IPS, ICP,

ISW, NMX, RL1

sv(’2p’) save output-files as b.2p, s.2p, d.2p
run(c=’plp.4’,s=’plp’) generate starting data for the fold contin-

uation. Constants changed : IPS, IRS,

ICP, NMX

sv(’tmp’) save output-files as b.tmp, s.tmp, d.tmp
run(c=’plp.5’,s=’tmp’) fold continuation; restart data from s.tmp.

Constants changed : IRS, NUZR

ap(’2p’) append output-files to b.2p, s.2p, d.2p
run(c=’plp.6’,s=’2p’) compute an isola of periodic solutions;

restart data from s.2p. Constants changed
: IRS, ISW, NMX, NUZR

sv(’iso’) save output-files as b.iso, s.iso, d.iso

Table 14.14: Commands for running demo plp.
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14.8 pp3 : Periodic Families and Loci of Hopf Points.

This demo illustrates the computation of stationary solution families that contain Hopf bifurca-
tions, and the computation of the emanating families of periodic solutions. In this example the
periodic solution families intersect at a secondary bifurcation point (a branch point). It it also
shown how to compute a locus of Hopf bifurcation points in two parameters. (In this example
the locus contains branch points, which lead to another locus!)

The equations, which model a 3D predator-prey system with harvesting (Doedel (1984)), are

u′1 = u1(1 − u1) − p4u1u2,
u′2 = −p2u2 + p4u1u2 − p5u2u3 − p1(1 − e−p6u2)
u′3 = −p3u3 + p5u2u3.

(14.9)

The free parameter is p1, while the other parameters are fixed, namely p2 = 0.25, p3 = 0.5,
p4 = 4, p5 = 3, and p6 = 5. However, both p1 and p4 are free in the computation of loci of Hopf
points.

COMMAND ACTION
mkdir pp3 create an empty work directory
cd pp3 change directory
@dm pp3 copy the demo files to the work directory
@R pp3 1 1st run; stationary solutions with 4 Hopf bifurcations
@sv pp3 save output-files as b.pp3, s.pp3, d.pp3

@R pp3 2 compute a family of periodic solutions
@ap pp3 append output-files to b.pp3, s.pp3, d.pp3

@R pp3 3 compute another family of periodic solutions
@ap pp3 append output-files to b.pp3, s.pp3, d.pp3

@R pp3 4 compute loci of Hopf points
@rl relabel the labeled solutions from this run
@sv hb save the output-files as b.hb, s.hb, d.pp3

Table 14.15: Commands for running demo pp3.
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AUTO-COMMAND ACTION
@p pp3 run PLAUT to graph the contents of b.pp3 and s.pp3;

PLAUT-COMMAND ACTION
d2 set convenient defaults
ax select axes
1 3 select real columns 1 and 3 in b.pp3

bd0 plot the bifurcation diagram; max u1 versus p1

bd get blow-up of current bifurcation diagram
0 0.6 0 1.2 enter diagram limits
d1 choose other default settings (with labels)
bd another blow-up of the bifurcation diagram
0 0.6 0 0.75 enter diagram limits
d2 set defaults
2d enter 2D mode, for plotting labeled solutions
13 15 17 19 21 23 25 27 select these orbits from s.pp3

d default orbit display; u1 versus time
2 3 select columns 2 and 3 in s.pp3

d display the orbits; u2 versus u1

2d enter 2D mode, for plotting labeled solutions
28 30 32 34 36 38 40 42 44 select these orbits
d default orbit display; u1 versus time
2 3 select columns 2 and 3 in s.pp3

d phase plane display; u2 versus u1

2 4 select columns 2 and 4 in s.pp3

d phase plane display; u3 versus u1

ex exit from 2D mode
end exit from PLAUT

Table 14.16: Plotting commands for demo pp3.

AUTO-COMMAND ACTION
@p hb run PLAUT to graph the contents of b.hb and s.hb;

PLAUT-COMMAND ACTION
d0 set defaults
ax select axes
1 6 select real columns 1 and 6 in b.hb

bd0 plot the bifurcation diagram; p4 versus p1

end exit from PLAUT

Table 14.17: Plotting the Hopf loci for demo pp3.
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14.9 tor : Detection of Torus Bifurcations.

This demo uses a model in Freire, Rodŕıguez-Luis, Gamero & Ponce (1993) to illustrate the
detection of a torus bifurcation. It also illustrates branch switching at a secondary periodic
bifurcation with double Floquet multiplier at z = 1. The computational results also include
folds, homoclinic orbits, and period-doubling bifurcations. Their continuation is not illustrated
here; see instead the demos plp, pp2, and pp3, respectively. The equations are

x′(t) =
[

− (β + ν)x+ βy − a3x
3 + b3(y − x)3

]

/r,
y′(t) = βx− (β + γ)y − z − b3(y − x)3,
z′(t) = y,

(14.10)

where γ = −0.6, r = 0.6, a3 = 0.328578, and b3 = 0.933578. Initially ν = −0.9 and β = 0.5.

AUTO -COMMAND ACTION
! mkdir tor create an empty work directory
cd tor change directory
demo(’tor’) copy the demo files to the work directory
ld(’tor’) load the problem definition
run(c=’tor.1’) 1st run; compute a stationary solution family with Hopf bifurcation
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’tor.2’,s=’1’) compute a family of periodic solutions;

restart from s.1. Constants changed :
IPS, IRS

ap(’1’) append output-files to b.1, s.1, d.1
run(c=’tor.3’,s=’1’) compute a bifurcating family of periodic

solutions; restart from s.1. Constants
changed : IRS, ISW, NMX

ap(’1’) append output-files to b.1, s.1, d.1

Table 14.18: Commands for running demo tor.
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14.10 pen : Rotations of Coupled Pendula.

This demo illustrates the computation of rotations, i.e., solutions that are periodic, modulo a
phase gain of an even multiple of π. AUTO checks the starting data for components with such
a phase gain and, if present, it will automatically adjust the computations accordingly. The
model equations, a system of two coupled pendula, (Doedel, Aronson & Othmer (1991)), are
given by

φ′′
1 + ǫφ′

1 + sinφ1 = I + γ(φ2 − φ1),
φ′′

2 + ǫφ′
2 + sinφ2 = I + γ(φ1 − φ2),

(14.11)

or, in equivalent first order form,

φ′
1 = ψ1,
φ′

2 = ψ2,
ψ′

1 = −ǫψ1 − sinφ1 + I + γ(φ2 − φ1),
ψ′

2 = −ǫψ2 − sinφ2 + I + γ(φ1 − φ2).

(14.12)

Throughout γ = 0.175. Initially, ǫ = 0.1 and I = 0.4.
Numerical data representing one complete rotation are contained in the file pen.dat. Each

row in pen.dat contains five real numbers, namely, the time variable t, φ1, φ2, ψ1 and ψ2. The
correponding parameter values are defined in the user-supplied subroutine STPNT.

Actually, in this example, a scaled time variable t is given in pen.dat. For this reason the
period ( PAR(11)) is also set in STPNT. Normally AUTO would automatically set the period
according to the data in pen.dat.

The AUTO -command us(’pen’) converts the data in pen.dat to a labeled AUTO solution
(with label 1) in a new file s.dat. The mesh will be suitably adapted to the solution, using the
number of mesh intervals NTST and the number of collocation point per mesh interval NCOL

specified in the constants-file c.pen. (Note that the file s.dat should be used for restart only.
Do not append new output-files to s.dat, as the command us(’pen’) only creates s.dat, with
no corresponding b.dat.)

The first run, with I as free problem parameter, starts from the converted solution with
label 1 in pen.dat. A period-doubling bifurcation is located, and the period-doubled family is
computed in the second run. Two branch points are located, and the bifurcating families are
traced out in the third and fourth run, respectively. The fifth run generates starting data for
the subsequent computation of a locus of period-doubling bifurcations. The actual computation
is done in the sixth run, with ǫ and I as free problem parameters.
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AUTO -COMMAND ACTION
! mkdir pen create an empty work directory
cd pen change directory
demo(’pen’) copy the demo files to the work directory
ld(’pen’) load the problem definition
us(’pen’) convert pen.dat to AUTO format in s.dat
run(c=’pen.1’,s=’dat’) locate a period doubling bifurcation; restart from s.dat
sv(’pen’) save output-files as b.pen, s.pen, d.pen
run(c=’pen.2’,s=’pen’) a family of period-doubled (and out-of-

phase) rotations. Constants changed :
IPS, NTST, ISW, NMX

ap(’pen’) append output-files tp b.pen, s.pen, d.pen
run(c=’pen.3’,s=’pen’) a secondary bifurcating family (without bi-

furcation detection). Constants changed :
IRS, ISP

ap(’pen’) append output-files to b.pen, s.pen, d.pen
run(c=’pen.4’,s=’pen’) another secondary bifurcating family

(without bifurcation detection). Con-
stants changed : IRS

ap(’pen’) append output-files to b.pen, s.pen, d.pen
run(c=’pen.5’,s=’pen’) generate starting data for period doubling

continuation. Constants changed : IRS,

ICP, ICP, ISW, NMX

sv(’t’) save output-files as b.t, s.t, d.t
run(c=’pen.6’,s=’t’) compute a locus of period doubling bi-

furcations; restart from s.t. Constants
changed : IRS

sv(’pd’) save output-files as b.pd, s.pd, d.pd

Table 14.19: Commands for running demo pen.
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14.11 chu : A Non-Smooth System (Chua’s Circuit).

Chua’s circuit is one of the simplest electronic devices to exhibit complex behavior. For related
calculations see Khibnik, Roose & Chua (1993). The equations modeling the circuit are

u′1 = α
[

u2 − h(u1)
]

,
u′2 = u1 − u2 + u3 ,
u′3 = −β u2 ,

(14.13)

where

h(x) = a1x+
1

2
(a0 − a1)

{

| x+ 1 | − | x− 1 |
}

,

and where we take β = 14.3, a0 = −1/7, a1 = 2/7.
Note that h(x) is not a smooth function, and hence the solution to the equations may have

non-smooth derivatives. However, for the orthogonal collocation method to attain its optimal
accuracy, it is necessary that the solution be sufficiently smooth. Moreover, the adaptive mesh
selection strategy will fail if the solution or one of its lower order derivatives has discontinuities.
For these reasons we use the smooth approximation

| x | ≈ 2x

π
arctan(Kx),

which get better as K increases. In the numerical calculations below we use K = 10. The free
parameter is α.

AUTO -COMMAND ACTION
! mkdir chu create an empty work directory
cd chu change directory
demo(’chu’) copy the demo files to the work directory
ld(’chu’) load the problem definition
run(c=’chu.1’) 1st run; stationary solutions
sv(’chu’) save output-files as b.chu, s.chu, d.chu
run(c=’chu.2’,s=’chu’) 2nd run; periodic solutions, with detection

of period-doubling. constants changed :
IPS, IRS, ICP, ICP

ap(’chu’) append the output-files to b.chu, s.chu, d.chu

Table 14.20: Commands for running demo chu.
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14.12 phs : Effect of the Phase Condition.

This demo illustrates the effect of the phase condition on the computation of periodic solutions.
We consider the differential equation

u′1 = λu1 − u2,
u′2 = u1(1 − u1).

(14.14)

This equation has a Hopf bifurcation from the trivial solution at λ = 0. The bifurcating
family of periodic solutions is vertical and along it the period increases monotonically. The
family terminates in a homoclinic orbit containing the saddle point (u1, u2) = (1, 0). Graphical
inspection of the computed periodic orbits, for example u1 versus the scaled time variable t,
shows how the phase condition has the effect of keeping the “peak” in the solution in the same
location.

AUTO -COMMAND ACTION
! mkdir phs create an empty work directory
cd phs change directory
demo(’phs’) copy the demo files to the work directory
ld(’phs’) load the problem definition
run(c=’phs.1’) detect Hopf bifurcation
sv(’phs’) save output-files as b.phs, s.phs, d.phs
run(c=’phs.2’,s=’phs’) compute periodic solutions. Constants

changed : IRS, IPS, NPR

ap(’phs’) append output-files to b.phs, s.phs, d.phs

Table 14.21: Commands for running demo phs.
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14.13 ivp : Time Integration with Euler’s Method.

This demo uses Euler’s method to locate a stationary solution of the following predator-prey
system with harvesting :

u′1 = p2u1(1 − u1) − u1u2 − p1(1 − e−p3u1),
u′2 = −u2 + p4u1u2,

(14.15)

where all problem parameters have a fixed value. The equations are the same as those in demo
pp2. The continuation parameter is the independent time variable, namely PAR(14).

Note that Euler time integration is only first order accurate, so that the time step must
be sufficiently small to ensure correct results. Indeed, this option has been added only as
a convenience, and should generally be used only to locate stationary states. Note that the
AUTO -constants DS, DSMIN, and DSMAX control the step size in the space consisting of time,
here PAR(14), and the state vector, here (u1, u2).

AUTO -COMMAND ACTION
! mkdir ivp create an empty work directory
cd ivp change directory
demo(’ivp’) copy the demo files to the work directory
ld(’ivp’) load the problem definition
run(c=’ivp.1’) time integration
sv(’ivp’) save output-files as b.ivp, s.ivp, d.ivp

Table 14.22: Commands for running demo ivp.
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Chapter 15

AUTO Demos : BVP.

15.1 exp : Bratu’s Equation.

This demo illustrates the computation of a solution family to the boundary value problem

u′1 = u2,
u′2 = −p1e

u1 ,
(15.1)

with boundary conditions u1(0) = 0, u1(1) = 0. This equation is also considered in Doedel,
Keller & Kernévez (1991a).

AUTO -COMMAND ACTION
! mkdir exp create an empty work directory
cd exp change directory
demo(’exp’) copy the demo files to the work directory
run(c=’exp.1’) 1st run; compute solution family containing fold
sv(’exp’) save output-files as b.exp, s.exp, d.exp
run(c=’exp.2’,s=’exp’) 2nd run; restart at a labeled solution, using

increased accuracy. Constants changed :
IRS, NTST, A1, DSMAX vspace0.2cm

ap(’exp’) append output-files to b.exp, s.exp, d.exp

Table 15.1: Commands for running demo exp.
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15.2 int : Boundary and Integral Constraints.

This demo illustrates the computation of a solution family to the equation

u′1 = u2,
u′2 = −p1e

u1 ,
(15.2)

with a non-separated boundary condition and an integral constraint:

u1(0) − u1(1) − p2 = 0,

∫ 1

0

u(t)dt− p3 = 0.

The solution family contains a fold, which, in the second run, is continued in two equation
parameters.

AUTO -COMMAND ACTION
! mkdir int create an empty work directory
cd int change directory
demo(’int’) copy the demo files to the work directory
run(c=’int.1’) 1st run; detection of a fold
sv(’int’) save output-files as b.int, s.int, d.int
run(c=’int.2’,s=’int’) 2nd run; generate starting data for a curve of folds. Constants changed :

pace0.2cm
sv(’t’) save the output-files as b.t, s.t, d.t
run(c=’int.3’,s=’t’) 3rd run; compute a curve of folds; restart

from s.t. Constants changed : IRS vs-
pace0.2cm

sv(’lp’) save the output-files as b.lp, s.lp, d.lp

Table 15.2: Commands for running demo int.

141



15.3 bvp : A Nonlinear ODE Eigenvalue Problem.

This demo illustrates the location of eigenvalues of a nonlinear ODE boundary value problem
as bifurcations from the trivial solution family. The family of solutions that bifurcates at the
first eigenvalue is computed in both directions. The equations are

u′1 = u2,
u′2 = −(p1π)2u1 + u2

1,
(15.3)

with boundary conditions u1(0) = 0, u1(1) = 0.

AUTO -COMMAND ACTION
! mkdir bvp create an empty work directory
cd bvp change directory
demo(’bvp’) copy the demo files to the work directory
run(c=’bvp.1’) compute the trivial solution family and locate eigenvalues
sv(’bvp’) save output-files as b.bvp, s.bvp, d.bvp
run(c=’bvp.2’,s=’bvp’) compute the first bifurcating family. Con-

stants changed : IRS, ISW, NPR,

DSMAX

ap(’bvp’) append output-files to b.bvp, s.bvp, d.bvp
run(c=’bvp.3’,s=’bvp’) compute the first bifurcating family in op-

posite direction. Constants changed : DS

ap(’bvp’) append output-files to b.bvp, s.bvp, d.bvp

Table 15.3: Commands for running demo bvp.
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15.4 lin : A Linear ODE Eigenvalue Problem.

This demo illustrates the location of eigenvalues of a linear ODE boundary value problem as
bifurcations from the trivial solution family. By means of branch switching an eigenfunction
is computed, as is illustrated for the first eigenvalue. This eigenvalue is then continued in two
parameters by fixing the L2-norm of the first solution component. The eigenvalue problem is
given by the equations

u′1 = u2,
u′2 = (p1π)2u1,

(15.4)

with boundary conditions u1(0) − p2 = 0 and u1(1) = 0. We add the integral constraint

∫ 1

0

u1(t)
2dt− p3 = 0.

Then p3 is simply the L2-norm of the first solution component. In the first two runs p2 is fixed,
while p1 and p3 are free. In the third run p3 is fixed, while p1 and p2 are free.

AUTO -COMMAND ACTION
! mkdir lin create an empty work directory
cd lin change directory
demo(’lin’) copy the demo files to the work directory
run(c=’lin.1’) 1st run; compute the trivial solution family and locate eigenvalues
sv(’lin’) save output-files as b.lin, s.lin, d.lin
run(c=’lin.2’,s=’lin’) 2nd run; compute a few steps along the

bifurcating family. Constants changed :
IRS, ISW, DSMAX

ap(’lin’) append output-files to b.lin, s.lin, d.lin
run(c=’lin.3’,s=’lin’) 3rd run; compute a two-parameter curve of

eigenvalues. Constants changed : IRS,

ISW, ICP(2)

sv(’2p’) save the output-files as b.2p, s.2p, d.2p

Table 15.4: Commands for running demo lin.
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15.5 non : A Non-Autonomous BVP.

This demo illustrates the continuation of solutions to the non-autonomous boundary value prob-
lem

u′1 = u2,

u′2 = −p1e
x3u1 ,

(15.5)

with boundary conditions u1(0) = 0, u1(1) = 0. Here x is the independent variable. This
system is first converted to the following equivalent autonomous system :

u′1 = u2,

u′2 = −p1e
u3

3
u1 ,

u′3 = 1,
(15.6)

with boundary conditions u1(0) = 0, u1(1) = 0, u3(0) = 0. (For a periodically forced system
see demo frc).

AUTO -COMMAND ACTION
! mkdir non create an empty work directory
cd non change directory
demo(’non’) copy the demo files to the work directory
run(c=’non.1’) compute the solution family
sv(’non’) save output-files as b.non, s.non, d.non

Table 15.5: Commands for running demo non.
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15.6 kar : The Von Karman Swirling Flows.

The steady axi-symmetric flow of a viscous incompressible fluid above an infinite rotating disk
is modeled by the following ODE boundary value problem (Equation (11) in Lentini & Keller
(1980) :

u′1 = Tu2,
u′2 = Tu3,
u′3 = T

[

−2γu4 + u2
2 − 2u1u3 − u2

4

]

,
u′4 = Tu5,
u′5 = T

[

2γu2 + 2u2u4 − 2u1u5

]

,

(15.7)

with left boundary conditions

u1(0) = 0, u2(0) = 0, u4(0) = 1 − γ,

and (asymptotic) right boundary conditions

[

f∞ + a(f∞, γ)
]

u2(1) + u3(1) − γ u4(1)
a(f∞,γ)

= 0,

a(f∞, γ) b2(f∞,γ)
γ

u2(1) +
[

f∞ + a(f∞, γ)
]

u4(1) + u5(1) = 0,

u1(1) = f∞,

(15.8)

where
a(f∞, γ) = 1√

2

[

(f 4
∞ + 4γ2)1/2 + f 2

∞

]1/2
,

b(f∞, γ) = 1√
2

[

(f 4
∞ + 4γ2)1/2 − f 2

∞

]1/2
.

(15.9)

Note that there are five differential equations and six boundary conditions. Correspondingly,
there are two free parameters in the computation of a solution family, namely γ and f∞. The
“period” T is fixed; T = 500. The starting solution is ui = 0, i = 1, · · · , 5, at γ = 1, f∞ = 0.

AUTO -COMMAND ACTION
! mkdir kar create an empty work directory
cd kar change directory
demo(’kar’) copy the demo files to the work directory
run(c=’kar.1’) computation of the solution family
sv(’kar’) save output-files as b.kar, s.kar, d.kar

Table 15.6: Commands for running demo kar.
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15.7 spb : A Singularly-Perturbed BVP.

This demo illustrates the use of continuation to compute solutions to the singularly perturbed
boundary value problem

u′1 = u2,
u′2 = λ

ǫ

(

u1u2(u
2
1 − 1) + u1

)

,
(15.10)

with boundary conditions u1(0) = 3/2, u1(1) = γ. The parameter λ has been introduced into the
equations in order to allow a homotopy from a simple equation with known exact solution to the
actual equation. This is done in the first run. In the second run ǫ is decreased by continuation.
In the third run ǫ is fixed at ǫ = .001 and the solution is continued in γ. This run takes more
than 1500 continuation steps. For a detailed analysis of the solution behavior see Lorenz (1982).

AUTO -COMMAND ACTION
! mkdir spb create an empty work directory
cd spb change directory
demo(’spb’) copy the demo files to the work directory
run(c=’spb.1’) 1st run; homotopy from λ = 0 to λ = 1
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’spb.2’,s=’1’) 2nd run; let ǫ tend to zero; restart from

s.1. constants changed : IRS, ICP(1),

NTST, DS

sv(’2’) save the output-files as b.2, s.2, d.2
run(c=’spb.3’,s=’2’) 3rd run; continuation in γ; ǫ =

0.001; restart from s.2. Constants
changed : IRS, ICP(1), RL0, ITNW,

EPSL, EPSU, NUZR

sv(’3’) save the output-files as b.3, s.3, d.3

Table 15.7: Commands for running demo spb.
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15.8 ezp : Complex Bifurcation in a BVP.

This demo illustrates the computation of a solution family to the the complex boundary value
problem

u′1 = u2,
u′2 = −p1e

u1 ,
(15.11)

with boundary conditions u1(0) = 0, u1(1) = 0. Here u1 and u2 are allowed to be complex, while
the parameter p1 can only take real values. In the real case, this is Bratu’s equation, whose
solution family contains a fold; see the demo exp. It is known (Henderson & Keller (1990))
that a simple quadratic fold gives rise to a pitch fork bifurcation in the complex equation. This
bifurcation is located in the first computation below. In the second and third run, both legs of
the bifurcating solution family are computed. On it, both solution components u1 and u2 have
nontrivial imaginary part.

AUTO -COMMAND ACTION
! mkdir ezp create an empty work directory
cd ezp change directory
demo(’ezp’) copy the demo files to the work directory
run(c=’ezp.1’) 1st run; compute solution family containing fold
sv(’ezp’) save output-files as p.ezp, s.ezp, d.ezp
run(c=’ezp.2’,s=’ezp’) 2nd run; compute bifurcating complex so-

lution family. Constants changed : IRS,

ISW

ap(’ezp’) append output-files to p.ezp, s.ezp, d.ezp
run(c=’ezp.3’,s=’ezp’) 3rd run; compute 2nd leg of bifurcating

family. constant changed : DS

ap(’ezp’) append output-files to p.ezp, s.ezp, d.ezp

Table 15.8: Commands for running demo ezp.
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Chapter 16

AUTO Demos : Parabolic PDEs.
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16.1 pd1 : Stationary States (1D Problem).

This demo uses Euler’s method to locate a stationary solution of a nonlinear parabolic PDE,
followed by continuation of this stationary state in a free problem parameter. The equation is

∂u

∂t
= D

∂2u

∂x2
+ p1 u (1 − u),

on the space interval [0, L], where L = PAR(11) = 10 is fixed throughout, as is the diffusion
constant D = PAR(15) = 0.1. The boundary conditions are u(0) = u(L) = 0 for all time.

In the first run the continuation parameter is the independent time variable, namely PAR(14),
while p1 = 1 is fixed. The AUTO -constants DS, DSMIN, and DSMAX then control the step size
in space-time, here consisting of PAR(14) and u(x). Initial data are u(x) = sin(πx/L) at time
zero. Note that in the subroutine STPNT the initial data must be scaled to the unit interval,
and that the scaled derivative must also be provided; see the equations-file pv1.f. In the second
run the continuation parameter is p1.

Euler time integration is only first order accurate, so that the time step must be sufficiently
small to ensure correct results. Indeed, this option has been added only as a convenience, and
should generally be used only to locate stationary states.

AUTO -COMMAND ACTION
! mkdir pd1 create an empty work directory
cd pd1 change directory
demo(’pd1’) copy the demo files to the work directory
run(c=’pd1.1’) time integration towards stationary state
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’pd1.2’,s=’1’) continuation of stationary states; read

restart data from s.1. constants changed :
IPS, IRS, ICP, etc.

sv(’2’) save output-files as b.2, s.2, d.2

Table 16.1: Commands for running demo pd1.
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16.2 pd2 : Stationary States (2D Problem).

This demo uses Euler’s method to locate a stationary solution of a nonlinear parabolic PDE,
followed by continuation of this stationary state in a free problem parameter. The equations are

∂u1/∂t = D1 ∂
2u1/∂x

2 + p1 u (1 − u) − u1u2,
∂u2/∂t = D2 ∂

2u2/∂x
2 − u2 + u1u2,

(16.1)

on the space interval [0, L], where L = PAR(11) = 1 is fixed throughout, as are the diffusion
constants D1 = PAR(15) = 1 and D2 = PAR(16) = 1. The boundary conditions are u1(0) =
u1(L) = 0 and u2(0) = u2(L) = 1, for all time.

In the first run the continuation parameter is the independent time variable, namely PAR(14),
while p1 = 12 is fixed. The AUTO -constants DS, DSMIN, and DSMAX then control the step
size in space-time, here consisting of PAR(14) and (u1(x), u2(x)). Initial data at time zero are
u1(x) = sin(πx/L) and u2(x) = 1. Note that in the subroutine STPNT the initial data must
be scaled to the unit interval, and that the scaled derivatives must also be provided; see the
equations-file pv2.f. In the second run the continuation parameter is p1. A branch point is
located during this run.

Euler time integration is only first order accurate, so that the time step must be sufficiently
small to ensure correct results. Indeed, this option has been added only as a convenience, and
should generally be used only to locate stationary states.

AUTO -COMMAND ACTION
! mkdir pd2 create an empty work directory
cd pd2 change directory
demo(’pd2’) copy the demo files to the work directory
run(c=’pd2.1’) time integration towards stationary state
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’pd2.2’,s=’1’) continuation of stationary states; read

restart data from s.1. constants changed :
IPS, IRS, ICP, etc.

sv(’2’) save output-files as b.2, s.2, d.2

Table 16.2: Commands for running demo pd2.
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16.3 wav : Periodic Waves.

This demo illustrates the computation of various periodic wave solutions to a system of coupled
parabolic partial differential equations on the spatial interval [0, 1]. The equations, that model
an enzyme catalyzed reaction (Doedel & Kernévez (1986b)) are :

∂u1/∂t = ∂2u1/∂x
2 − p1

[

p4R(u1, u2) − (p2 − u1)
]

,
∂u2/∂t = β∂2u2/∂x

2 − p1

[

p4R(u1, u2) − p7(p3 − u2)
]

.
(16.2)

All equation parameters, except p3, are fixed throughout.

AUTO -COMMAND ACTION
! mkdir wav create an empty work directory
cd wav change directory
demo(’wav’) copy the demo files to the work directory
run(c=’wav.1’) 1st run; stationary solutions of the system without diffusion
sv(’ode’) save output-files as b.ode, s.ode, d.ode
cp c.wav.2 c.wav constants changed : IPS

run(c=’wav.2’,s=’wav’) 2nd run; detect bifurcations to wave train
solutions. Constants changed : IPS

sv(’wav’) save output-files as b.wav, s.wav, d.wav
run(c=’wav.3’,s=’wav’) 3rd run; wave train solutions of fixed wave

speed. Constants changed : IRS, IPS,

NUZR, ILP

ap(’wav’) append output-files to b.wav, s.wav, d.wav
run(c=’wav.4’,s=’wav’) 4th run; wave train solutions of fixed wave

length. Constants changed : IRS, IPS,

NMX, ICP, NUZR

sv(’rng’) save output-files as b.rng, s.rng, d.rng
run(c=’wav.5’,s=’wav’) 5th run; time evolution computation. Con-

stants changed : IPS, NMX, NPR, ICP

sv(’tim’) save output-files as b.tim, s.tim, d.tim

Table 16.3: Commands for running demo wav.
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16.4 brc : Chebyshev Collocation in Space.

This demo illustrates the computation of stationary solutions and periodic solutions to systems of
parabolic PDEs in one space variable, using Chebyshev collocation in space. More precisely, the
approximate solution is assumed of the form u(x, t) =

∑n+1
k=0 uk(t)ℓk(x). Here uk(t) corresponds

to u(xk, t) at the Chebyshev points
{

xk

}n

k=1
with respect to the interval [0, 1]. The polynomials

{

ℓk(x)
}n+1

k=0
are the Lagrange interpolating coefficients with respect to points

{

xk

}n+1

k=0
, where

x0 = 0 and xn+1 = 1. The number of Chebyshev points in [0, 1], as well as the number of
equations in the PDE system, can be set by the user in the file brc.inc.

As an illustrative application we consider the Brusselator (Holodniok, Knedlik & Kub́ıček
(1987))

ut = Dx/L
2uxx + u2v − (B + 1)u+ A,

vt = Dy/L
2vxx − u2v +Bu,

(16.3)

with boundary conditions u(0, t) = u(1, t) = A and v(0, t) = v(1, t) = B/A.
Note that, given the non-adaptive spatial discretization, the computational procedure here

is not appropriate for PDEs with solutions that rapidly vary in space, and care must be taken
to recognize spurious solutions and bifurcations.

AUTO -COMMAND ACTION
! mkdir brc create an empty work directory
cd brc change directory
demo(’brc’) copy the demo files to the work directory
run(c=’brc.1’) compute the stationary solution family with Hopf bifurcations
sv(’brc’) save output-files as b.brc, s.brc, d.brc
run(c=’brc.2’,s=’brc’) compute a family of periodic solutions

from the first Hopf point. Constants
changed : IRS, IPS

ap(’brc’) append the output-files to b.brc, s.brc, d.brc
run(c=’brc.3’,s=’brc’) compute a solution family from a sec-

ondary periodic bifurcation. Constants
changed : IRS, ISW

ap(’brc’) append the output-files to b.brc, s.brc, d.brc

Table 16.4: Commands for running demo brc.
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16.5 brf : Finite Differences in Space.

This demo illustrates the computation of stationary solutions and periodic solutions to systems of
parabolic PDEs in one space variable. A fourth order accurate finite difference approximation is
used to approximate the second order space derivatives. This reduces the PDE to an autonomous
ODE of fixed dimension which AUTO is capable of treating. The spatial mesh is uniform; the
number of mesh intervals, as well as the number of equations in the PDE system, can be set by
the user in the file brf.inc.

As an illustrative application we consider the Brusselator (Holodniok, Knedlik & Kub́ıček
(1987))

ut = Dx/L
2uxx + u2v − (B + 1)u+ A,

vt = Dy/L
2vxx − u2v +Bu,

(16.4)

with boundary conditions u(0, t) = u(1, t) = A and v(0, t) = v(1, t) = B/A.
Note that, given the non-adaptive spatial discretization, the computational procedure here

is not appropriate for PDEs with solutions that rapidly vary in space, and care must be taken
to recognize spurious solutions and bifurcations.

AUTO -COMMAND ACTION
! mkdir brf create an empty work directory
cd brf change directory
demo(’brf’) copy the demo files to the work directory
run(c=’brf.1’) compute the stationary solution family with Hopf bifurcations
sv(’brf’) save output-files as b.brf, s.brf, d.brf
run(c=’brf.2’,s=’brf’) compute a family of periodic solutions

from the first Hopf point. Constants
changed : IRS, IPS

ap(’brf’) append the output-files to b.brf, s.brf, d.brf
run(c=’brf.3’,s=’brf’) compute a solution family from a sec-

ondary periodic bifurcation. Constants
changed : IRS, ISW

ap(’brf’) append the output-files to b.brf, s.brf, d.brf

Table 16.5: Commands for running demo brf.
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16.6 bru : Euler Time Integration (the Brusselator).

This demo illustrates the use of Euler’s method for time integration of a nonlinear parabolic
PDE. The example is the Brusselator (Holodniok, Knedlik & Kub́ıček (1987)), given by

ut = Dx/L
2uxx + u2v − (B + 1)u+ A,

vt = Dy/L
2vxx − u2v +Bu,

(16.5)

with boundary conditions u(0, t) = u(1, t) = A and v(0, t) = v(1, t) = B/A. All parameters are
given fixed values for which a stable periodic solution is known to exist.

The continuation parameter is the independent time variable, namely PAR(14). The AUTO -
constants DS, DSMIN, and DSMAX then control the step size in space-time, here consist-
ing of PAR(14) and (u(x), v(x)). Initial data at time zero are u(x) = A − 0.5 sin(πx) and
v(x) = B/A+ 0.7 sin(πx). Note that in the subroutine STPNT the space derivatives of u and
v must also be provided; see the equations-file bru.f.

Euler time integration is only first order accurate, so that the time step must be sufficiently
small to ensure correct results. This option has been added only as a convenience, and should
generally be used only to locate stationary states. Indeed, in the case of the asymptotic periodic
state of this demo, the number of required steps is very large and use of a better time integrator
is advisable.

AUTO -COMMAND ACTION
! mkdir bru create an empty work directory
cd bru change directory
demo(’bru’) copy the demo files to the work directory
run(c=’bru.1’) time integration
sv(’bru’) save output-files as b.bru, s.bru, d.bru

Table 16.6: Commands for running demo bru.
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Chapter 17

AUTO Demos : Optimization.
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17.1 opt : A Model Algebraic Optimization Problem.

This demo illustrates the method of successive continuation for constrained optimization prob-
lems by applying it to the following simple problem : Find the maximum sum of coordinates
on the unit sphere in R5. Coordinate 1 is treated as the state variable. Coordinates 2-5 are
treated as control parameters. For details on the successive continuation procedure see Doedel,
Keller & Kernévez (1991a), Doedel, Keller & Kernévez (1991b).

AUTO -COMMAND ACTION
! mkdir opt create an empty work directory
cd opt change directory
demo(’opt’) copy the demo files to the work directory
run(c=’opt.1’) one free equation parameter
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’opt.2’,s=’1’) two free equation parameters; read restart

data from s.1. Constants changed : IRS

sv(’2’) save output-files as b.2, s.2, d.2
run(c=’opt.3’,s=’2’) three free equation parameters; read

restart data from s.2. Constants changed
: IRS

sv(’3’) save output-files as b.3, s.3, d.3
run(c=’opt.4’,s=’3’) four free equation parameters; read restart

data from s.3. Constants changed : IRS

sv(’4’) save output-files as b.4, s.4, d.4

Table 17.1: Commands for running demo opt.
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17.2 ops : Optimization of Periodic Solutions.

This demo illustrates the method of successive continuation for the optimization of periodic
solutions. For a detailed description of the basic method see Doedel, Keller & Kernévez (1991b).
The illustrative system of autonomous ODEs, taken from Rodŕıguez-Luis (1991), is

x′(t) = [−λ4(x
3/3 − x) + (z − x)/λ2 − y]/λ1,

y′(t) = x− λ3,
z′(t) = −(z − x)/λ2,

(17.1)

with objective functional

ω =

∫ 1

0

g(x, y, z;λ1, λ2, λ3, λ4) dt,

where g(x, y, z;λ1, λ2, λ3, λ4) ≡ λ3. Thus, in this application, a one-parameter extremum of g
corresponds to a fold with respect to the problem parameter λ3, and multi-parameter extrema
correspond to generalized folds. Note that, in general, the objective functional is an integral
along the periodic orbit, so that a variety of optimization problems can be addressed.

For the case of periodic solutions, the extended optimality system can be generated auto-
matically, i.e., one need only define the vector field and the objective functional, as in done in
the file ops.f. For reference purpose it is convenient here to write down the full extended system
in its general form :

u′(t) = Tf
(

u(t), λ
)

, T ∈ R (period), u(·), f(·, ·) ∈ Rn, λ ∈ Rnλ ,

w′(t) = −Tfu

(

u(t), λ
)∗
w(t) + κu′0(t) + γgu

(

u(t), λ
)∗
, w(·) ∈ Rn, κ, γ ∈ R,

u(1) − u(0) = 0, w(1) − w(0) = 0,

∫ 1

0
u(t)∗u′0(t) dt = 0,

∫ 1

0
ω − g

(

u(t), λ
)

dt = 0,

∫ 1

0
w(t)∗w(t) + κ2 + γ2 − α dt = 0, α ∈ R,

∫ 1

0
f
(

u(t), λ
)∗
w(t) − γgT

(

u(t), λ
)

− τ0 dt = 0, τ0 ∈ R,

∫ 1

0
Tfλi

(

u(t), λ
)∗
w(t) − γgλi

(

u(t), λ
)

− τi dt = 0, τi ∈ R, i = 1, · · · , nλ.

(17.2)

Above u0 is a reference solution, namely, the previous solution along a solution family.
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In the computations below, the two preliminary runs, with IPS=1 and IPS=2, respec-
tively, locate periodic solutions. The subsequent runs are with IPS=15 and hence use the
automatically generated extended system.

- Run 1. Locate a Hopf bifurcation. The free system parameter is λ3.

- Run 2. Compute a family of periodic solutions from the Hopf bifurcation.

- Run 3. This run retraces part of the periodic solution family, using the full optimality
system, but with all adjoint variables, w(·), κ, γ, and hence α, equal to zero. The optimality
parameters τ0 and τ3 are zero throughout. An extremum of the objective functional with
respect to λ3 is located. Such a point corresponds to a branch point of the extended
system. Given the choice of objective functional in this demo, this extremum is also a fold
with respect to λ3.

- Run 4. Branch switching at the above-found branch point yields nonzero values of the
adjoint variables. Any point on the bifurcating family away from the branch point can
serve as starting solution for the next run. In fact, the branch-switching can be viewed
as generating a nonzero eigenvector in an eigenvalue-eigenvector relation. Apart from the
adjoint variables, all other variables remain unchanged along the bifurcating family.

- Run 5. The above-found starting solution is continued in two system parameters, here
λ3 and λ2; i.e., a two-parameter family of extrema with respect to λ3 is computed. Along
this family the value of the optimality parameter τ2 is monitored, i.e., the value of the
functional that vanishes at an extremum with respect to the system parameter λ2. Such
a zero of τ2 is, in fact, located, and hence an extremum of the objective functional with
respect to both λ2 and λ3 has been found. Note that, in general, τi is the value of the
functional that vanishes at an extremum with respect to the system parameter λi.

- Run 6. In the final run, the above-found two-parameter extremum is continued in three
system parameters, here λ1, λ2, and λ3, toward λ1 = 0. Again, given the particular choice
of objective functional, this final continuation has an alternate significance here : it also
represents a three-parameter family of transcritical secondary periodic bifurcations points.

Although not illustrated here, one can restart an ordinary continuation of periodic solutions,
using IPS=2 or IPS=3, from a labeled solution point on a family computed with IPS=15.
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The free scalar variables specified in the AUTO constants-files for Run 3 and Run 4 are
shown in Table 17.2.

Index 3 11 12 22 -22 -23 -31
Variable λ3 T α τ2 [λ2] [λ3] [T ]

Table 17.2: Runs 3 and 4 (files c.ops.3 and c.ops.4).

The parameter α, which is the norm of the adjoint variables, becomes nonzero after branch
switching in Run 4. The negative indices (-22, -23, and -31) set the active optimality functionals,
namely for λ2, λ3, and T , respectively, with corresponding variables τ2, τ3, and τ0, respectively.
These should be set in the first run with IPS=15 and remain unchanged in all subsequent runs.

Index 3 2 11 22 -22 -23 -31
Variable λ3 λ2 T τ2 [λ2] [λ3] [T ]

Table 17.3: Run 5 (file c.ops.5).

In Run 5 the parameter α, which has been replaced by λ2, remains fixed and nonzero. The
variable τ2 monitors the value of the optimality functional associated with λ2. The zero of τ2
located in this run signals an extremum with respect to λ2.

Index 3 2 1 11 -22 -23 -31
Variable λ3 λ2 λ1 T [λ2] [λ3] [T ]

Table 17.4: Run 6 (file c.ops.6).

In Run 6 τ2, which has been replaced by λ1, remains zero.
Note that τ0 and τ3 are not used as variables in any of the runs; in fact, their values remain

zero throughout. Also note that the optimality functionals corresponding to τ0 and τ3 (or, equiv-
alently, to T and λ3) are active in all runs. This set-up allows the detection of the extremum
of the objective functional, with T and λ3 as scalar equation parameters, as a bifurcation in the
third run.

The parameter λ4, and its corresponding optimality variable τ4, are not used in this demo.
Also, λ1 is used in the last run only, and its corresponding optimality variable τ1 is never used.
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AUTO -COMMAND ACTION
! mkdir ops create an empty work directory
cd ops change directory
demo(’ops’) copy the demo files to the work directory
run(c=’ops.1’) locate a Hopf bifurcation
sv(’0’) save output-files as b.0, s.0, d.0
run(c=’ops.2’,s=’0’) compute a family of periodic solutions;

restart from s.0. Constants changed :
IPS, IRS, NMX, NUZR

ap(’0’) append the output-files to b.0, s.0, d.0
run(c=’ops.3’,s=’0’) locate a 1-parameter extremum as a bi-

furcation; restart from s.0. Constants
changed : IPS, IRS, ICP, · · ·

sv(’1’) save the output-files as b.1, s.1, d.1
run(c=’ops.4’,s=’1’) switch branches to generate optimality

starting data; restart from s.1. Constants
changed : IRS, ISP, ISW, NMX

ap(’1’) append the output-files to b.1, s.1, d.1
run(c=’ops.5’,s=’1’) compute 2-parameter family of 1-

parameter extrema; restart from s.1.
Constants changed : IRS, ISW, ICP,

ISW, · · ·
sv(’2’) save the output-files as b.2, s.2, d.2
run(c=’ops.6’,s=’2’) compute 3-parameter family of 2-

parameter extrema; restart from s.2.
Constants changed : IRS, ICP, EPSL,

EPSU, NUZR

sv(’3’) save the output-files as b.3, s.3, d.3

Table 17.5: Commands for running demo ops.
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17.3 obv : Optimization for a BVP.

This demo illustrates use of the method of successive continuation for a boundary value opti-
mization problem. A detailed description of the basic method, as well as a discussion of the
specific application considered here, is given in Doedel, Keller & Kernévez (1991b). The required
extended system is fully programmed here in the user-supplied routines in obv.f. For the case
of periodic solutions the optimality system can be generated automatically; see the demo ops.

Consider the system
u′1(t) = u2(t),
u′2(t) = −λ1e

p(u1,λ2,λ3),
(17.3)

where p(u1, λ2, λ3) ≡ u1 + λ2u
2
1 + λ3u

4
1, with boundary conditions

u1(0) = 0,
u1(1) = 0.

(17.4)

The objective functional is

ω =

∫ 1

0

(u1(t) − 1)2 dt+
1

10

3
∑

k=1

λ2
k.

The successive continuation equations are given by

u′1(t) = u2(t),
u′2(t) = −λ1e

p(u1,λ2,λ3),
w′

1(t) = λ1e
p(u1,λ2,λ3)pu1

w2(t) + 2γ(u1(t) − 1),
w′

2(t) = −w1(t),

(17.5)

where

pu1
≡ ∂p

∂u1

= 1 + 2λ2u1 + 4λ3u
3
1,

with
u1(0) = 0, w1(0) − β1 = 0, w2(0) = 0,
u1(1) = 0, w1(1) + β2 = 0, w2(1) = 0,

(17.6)

∫ 1

0

[

ω − (u1(t) − 1)2 − 1

10

3
∑

k=1

λ2
k

]

dt = 0,

∫ 1

0

[

w2
1(t) − α0

]

dt = 0,

∫ 1

0

[

−ep(u1,λ2,λ3)w2(t) − 1
5
γλ1

]

dt = 0,
∫ 1

0

[

−λ1e
p(u1,λ2,λ3)u1(t)

2w2(t) − 1
5
γλ2 − τ2

]

dt = 0,
∫ 1

0

[

−λ1e
p(u1,λ2,λ3)u1(t)

4w2(t) − 1
5
γλ3 − τ3

]

dt = 0.

(17.7)

In the first run the free equation parameter is λ1. All adjoint variables are zero. Three
extrema of the objective function are located. These correspond to branch points and, in the
second run, branch switching is done at one of these. Along the bifurcating family the adjoint
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variables become nonzero, while state variables and λ1 remain constant. Any such non-trivial
solution point can be used for continuation in two equation parameters, after fixing the L2-norm
of one of the adjoint variables. This is done in the third run. Along the resulting family several
two-parameter extrema are located by monotoring certain inner products. One of these is further
continued in three equation parameters in the final run, where a three-parameter extremum is
located.

AUTO -COMMAND ACTION
! mkdir obv create an empty work directory
cd obv change directory
demo(’obv’) copy the demo files to the work directory
run(c=’obv.1’) locate 1-parameter extrema as branch points
sv(’obv’) save output-files as b.obv, s.obv, d.obv
run(c=’obv.2’,s=’obv’) compute a few step on the first bifurcating

family. Constants changed : IRS, ISW,

NMX

sv(’1’) save the output-files as b.1, s.1, d.1
run(c=’obv.3’,s=’1’) locate 2-parameter extremum; restart from

s.1. Constants changed : IRS, ISW,

NMX, ICP(3)

sv(’2’) save the output-files as b.2, s.2, d.2
run(c=’obv.4’,s=’2’) locate 3-parameter extremum; restart from

s.2. Constants changed : IRS, ICP(4)

sv(’3’) save the output-files as b.3, s.3, d.3

Table 17.6: Commands for running demo obv.
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Chapter 18

AUTO Demos : Connecting orbits.
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18.1 fsh : A Saddle-Node Connection.

This demo illustrates the computation of travelling wave front solutions to the Fisher equation,

wt = wxx + f(w), −∞ < x <∞, t > 0,
f(w) ≡ w(1 − w).

(18.1)

We look for solutions of the form w(x, t) = u(x+ ct), where c is the wave speed. This gives the
first order system

u′1(z) = u2(z),
u′2(z) = cu2(z) − f

(

u1(z)
)

.
(18.2)

Its fixed point (0, 0) has two positive eigenvalues when c > 2. The other fixed point, (1, 0), is
a saddle point. A family of orbits connecting the two fixed points requires one free parameter;
see Friedman & Doedel (1991). Here we take this parameter to be the wave speed c.

In the first run a starting connecting orbit is computed by continuation in the period T .
This procedure can be used generally for time integration of an ODE with AUTO . Starting
data in STPNT correspond to a point on the approximate stable manifold of (1, 0), with T
small. In this demo the “free” end point of the orbit necessary approaches the unstable fixed
point (0, 0). A computed orbit with sufficiently large T is then chosen as restart orbit in the
second run, where, typically, one replaces T by c as continuation parameter. However, in the
second run below, we also add a phase condition, and both c and T remain free.

AUTO -COMMAND ACTION
! mkdir fsh create an empty work directory
cd fsh change directory
demo(’fsh’) copy the demo files to the work directory
run(c=’fsh.1’) continuation in the period T , with c fixed; no phase condition
sv(’0’) save output-files as b.0, s.0, d.0
run(c=’fsh.2’,s=’0’) continuation in c and T , with active phase

condition. Constants changed : IRS,

ICP, NINT, DS

sv(’fsh’) save output-files as b.fsh, s.fsh, d.fsh

Table 18.1: Commands for running demo fsh.
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18.2 nag : A Saddle-Saddle Connection.

This demo illustrates the computation of traveling wave front solutions to Nagumo’s equation,

wt = wxx + f(w, a), −∞ < x <∞, t > 0,
f(w, a) ≡ w(1 − w)(w − a), 0 < a < 1.

(18.3)

We look for solutions of the form w(x, t) = u(x+ ct), where c is the wave speed. This gives the
first order system

u′1(z) = u2(z),
u′2(z) = cu2(z) − f

(

u1(z), a
)

,
(18.4)

where z = x + ct, and ′ = d/dz. If a = 1/2 and c = 0 then there are two analytically known
heteroclinic connections, one of which is given by

u1(z) =
e

1

2

√
2z

1 + e
1

2

√
2z
, u2(z) = u′1(z), −∞ < z <∞.

The second heteroclinic connection is obtained by reflecting the phase plane representation of the
first with respect to the u1-axis. In fact, the two connections together constitute a heteroclinic
cycle. One of the exact solutions is used below as starting orbit. To start from the second exact
solution, change SIGN=-1 in the routine STPNT in nag.f and repeat the computations below;
see also Friedman & Doedel (1991).

AUTO -COMMAND ACTION
! mkdir nag create an empty work directory
cd nag change directory
demo(’nag’) copy the demo files to the work directory
run(c=’nag.1’) compute part of first family of heteroclinic orbits
sv(’nag’) save output-files as b.nag, s.nag, d.nag
run(c=’nag.2’,s=’nag’) compute first family in opposite direction.

Constants changed : DS

ap(’nag’) append output-files to b.nag, s.nag, d.nag

Table 18.2: Commands for running demo nag.
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18.3 stw : Continuation of Sharp Traveling Waves.

This demo illustrates the computation of sharp traveling wave front solutions to nonlinear dif-
fusion problems of the form

wt = A(w)wxx +B(w)w2
x + C(w),

with A(w) = a1w + a2w
2, B(w) = b0 + b1w + b2w

2, and C(w) = c0 + c1w + c2w
2. Such

equations can have sharp traveling wave fronts as solutions, i.e., solutions of the form
w(x, t) = u(x + ct) for which there is a z0 such that u(z) = 0 for z ≥ z0, u(z) 6= 0 for z < z0,
and u(z) → constant as z → −∞. These solutions are actually generalized solutions, since they
need not be differentiable at z0.

Specifically, in this demo a homotopy path will be computed from an analytically known
exact sharp traveling wave solution of

(1) wt = 2wwxx + 2w2
x + w(1 − w),

to a corresponding sharp traveling wave of

(2) wt = (2w + w2)wxx + ww2
x + w(1 − w).

This problem is also considered in Doedel, Keller & Kernévez (1991b). For these two special
cases the functions A,B,C are defined by the coefficients in Table 18.3.

a1 a2 b0 b1 b2 c0 c1 c2
Case (1) 2 0 2 0 0 0 1 -1
Case (2) 2 1 0 1 0 0 1 -1

Table 18.3: Problem coefficients in demo stw.

With w(x, t) = u(x+ ct), z = x+ ct, one obtains the reduced system

u′1(z) = u2,
u′2(z) =

[

cu2 −B(u1)u
2
2 − C(u1)

]

/A(u1).
(18.5)

To remove the singularity when u1 = 0, we apply a nonlinear transformation of the independent
variable (see Aronson (1980)), viz., d/dz̃ = A(u1)d/dz, which changes the above equation into

u′1(z̃) = A(u1)u2,
u′2(z̃) = cu2 −B(u1)u

2
2 − C(u1).

(18.6)

Sharp traveling waves then correspond to heteroclinic connections in this transformed system.
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Finally, we map [0, T ] → [0, 1] by the transformation ξ = z̃/T . With this scaling of the
independent variable, the reduced system becomes

u′1(ξ) = TA(u1)u2,
u′2(ξ) = T

[

cu2 −B(u1)u
2
2 − C(u1)

]

.
(18.7)

For Case 1 this equation has a known exact solution, namely,

u(ξ) =
1

1 + exp(Tξ)
, v(ξ) =

−1
2

1 + exp(−Tξ) .

This solution has wave speed c = 1. In the limit as T → ∞ its phase plane trajectory connects
the stationary points (1, 0) and (0,−1

2
).

The sharp traveling wave in Case 2 can now be obtained using the following homotopy. Let
(a1, a2, b0, b1, b2) = (1 − λ)(2, 0, 2, 0, 0) + λ(2, 1, 0, 1, 0). Then as λ varies continuously from 0 to
1, the parameters (a1, a2, b0, b1, b2) vary continously from the values for Case 1 to the values for
Case 2.

AUTO -COMMAND ACTION
! mkdir stw create an empty work directory
cd stw change directory
demo(’stw’) copy the demo files to the work directory
run(c=’stw.1’) continuation of the sharp traveling wave
sv(’stw’) save output-files as b.stw, s.stw, d.stw

Table 18.4: Commands for running demo stw.

167



Chapter 19

AUTO Demos : Miscellaneous.
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19.1 pvl : Use of the Routine PVLS.

Consider Bratu’s equation
u′1 = u2,
u′2 = −p1e

u1 ,
(19.1)

with boundary conditions u1(0) = 0, u1(1) = 0. As in demo exp, a solution curve requires one
free parameter; here p1.

Note that additional parameters are specified in the user-supplied subroutine PVLS in file
pvls.f, namely, p2 (the L2-norm of u1), p3 (the minimum of u2 on the space-interval [0, 1] ), p4

(the boundary value u2(0) ). These additional parameters should be considered as “solution
measures” for output purposes; they should not be treated as true continuation parameters.

Note also that four free parameters are specified in the AUTO -constants file c.pvl.1, namely,
p1, p2, p3, and p4. The first one in this list, p1, is the true continuation parameter. The
parameters p2, p3, and p4 are overspecified so that their values will appear in the output.
However, it is essential that the true continuation parameter appear first. For example, it
would be an error to specify the parameters in the following order : p2, p1, p3, p4.

In general, true continuation parameters must appear first in the parameter-specification
in the AUTO constants-file. Overspecified parameters will be printed, and can be defined in
PVLS, but they are not part of the intrinsic continuation procedure.

As this demo also illustrates (see the UZR values in c.pvl.1), labeled solutions can also be
output at selected values of the overspecified parameters.

AUTO -COMMAND ACTION
! mkdir pvl create an empty work directory
cd pvl change directory
demo(’pvl’) copy the demo files to the work directory
run(c=’pvl.1’) compute a solution family
sv(’pvl’) save output-files as b.pvl, s.pvl, d.pvl

Table 19.1: Commands for running demo pvl.
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19.2 ext : Spurious Solutions to BVB.

This demo illustrates the computation of spurious solutions to the boundary value problem

u′1 − u2 = 0,
u′2 + λ2π2 sin(u1 + u2

1 + u3
1) = 0, t ∈ [0, 1],

u1(0) = 0, u1(1) = 0.
(19.2)

Here the differential equation is discretized using a fixed uniform mesh. This results in spurious
solutions that disappear when an adaptive mesh is used. See the AUTO -constant IAD in
Section 10.3. This example is also considered in Beyn & Doedel (1981) and Doedel, Keller &
Kernévez (1991b).

AUTO -COMMAND ACTION
! mkdir ext create an empty work directory
cd ext change directory
demo(’ext’) copy the demo files to the work directory
run(c=’ext.1’) detect bifurcations from the trivial solution family
sv(’ext’) save output-files as b.ext, s.ext, d.ext
run(c=’ext.2’,s=’ext’) compute a bifurcating family containing

spurious bifurcations. Constants changed
: IRS, ISW, NUZR

ap(’ext’) append output-files to b.ext, s.ext, d.ext

Table 19.2: Commands for running demo ext.
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19.3 tim : A Test Problem for Timing AUTO .

This demo is a boundary value problem with variable dimension NDIM. It can be used to time
the performance of AUTO for various choices of NDIM (which must be even), NTST, and NCOL.
The equations are

u′i = ui,
v′i = −p1 e(ui),

(19.3)

i = 1, · · · , NDIM/2, with boundary conditions ui(0) = 0, ui(1) = 0. Here

e(u) =
n
∑

k=0

uk

k!
,

with n = 25. The computation requires 10 full LU -decompositions of the linearized system that
arises from Newton’s method for solving the collocation equations. The commands for running
the timing problem for a particular choice of NDIM, NTST, and NCOL are given below. (Note
that if NDIM is changed then NBC must be changed accordingly.)

AUTO -COMMAND ACTION
! mkdir tim create an empty work directory
cd tim change directory
demo(’tim’) copy the demo files to the work directory
run(c=’tim.1’) Timing run
sv(’tim’) save output-files as b.tim, s.tim, d.tim

Table 19.3: Commands for running demo tim.
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Chapter 20

HomCont.

20.1 Introduction.

HomCont is a collection of routines for the continuation of homoclinic solutions to ODEs in
two or more parameters. The accurate detection and multi-parameter continuation of certain
codimension-two singularities is allowed for, including all known cases that involve a unique
homoclinic orbit at the singular point. Homoclinic connections to hyperbolic and non-hyperbolic
equilibria are allowed as are certain heteroclinic orbits. Homoclinic orbits in reversible systems
can also be computed. The theory behind the methods used is explained in Champneys &
Kuznetsov (1994), Bai & Champneys (1996), Sandstede (1995b, 1995c), Champneys, Kuznetsov
& Sandstede (1996) and references therein. The final cited paper contains a concise description
of the present version.

The current implementation of HomCont must be considered as experimental, and updates
are anticipated. The HomCont routines are in the file auto/07p/src/autlib5.f. Expert users
wishing to modify the routines may look there. Note also that at present, HomCont can be run
only in AUTO Command Mode and not with the GUI.

20.2 HomCont Files and Routines.

In order to run HomCont one must prepare an equations file xxx.f, where xxx is the name
of the example, and two constants-files c.xxx and h.xxx. The first two of these files are in
the standard AUTO format, whereas the h.xxx file contains constants that are specific to
homoclinic continuation. The choice IPS=9 in c.xxx specifies the problem as being homoclinic
continuation, in which case h.xxx is required.

The equation-file kpr.f serves as a sample for new equation files. It contains the Fortran
routines FUNC, STPNT, PVLS, BCND, ICND and FOPT. The final three are
dummy routines which are never needed for homoclinic continuation. Note a minor difference
in STPNT and PVLS with other AUTO equation-files, in that the common block /BLHOM/

is required.
The constants-file c.xxx is identical in format to other AUTO constants-files. Note that the

values of the constants NBC and NINT are irrelevant, as these are set automatically by the
choice IPS=9. Also, the choice JAC=1 is strongly recommended, because the Jacobian is used
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extensively for calculating the linearization at the equilibria and hence for evaluating boundary
conditions and certain test functions. However, note that JAC=1 does not necessarily mean
that auto will use the analytically specified Jacobian for continuation.

20.3 HomCont-Constants.

An example for the additional file h.xxx is listed below:

1 2 1 1 1 NUNSTAB,NSTAB,IEQUIB,ITWIST,ISTART

0 NREV,(/,I,IREV(I)),I=1,NREV)

1 NFIXED,(/,I,IFIXED(I)),I=1,NFIXED)

13

1 NPSI,(/,I,IPSI(I)),I=1,NPSI)

9 10 13

The constants specified in h.xxx have the following meaning.

20.3.1 NUNSTAB

Number of unstable eigenvalues of the left-hand equilibrium (the equilibrium approached by the
orbit as t→ −∞).

20.3.2 NSTAB

Number of stable eigenvalues of the right-hand equilibrium (the equilibrium approached by the
orbit as t→ +∞).

20.3.3 IEQUIB

- IEQUIB=0 : Homoclinic orbits to hyperbolic equilibria; the equilibrium is specified explic-
itly in PVLS and stored in PAR(11+I), I=1,NDIM.

- IEQUIB=1 : Homoclinic orbits to hyperbolic equilibria; the equilibrium is solved for during
continuation. Initial values for the equilibrium are stored in PAR(11+I), I=1,NDIM in
STPNT.

- IEQUIB=2 : Homoclinic orbits to a saddle-node; initial values for the equilibrium are stored
in PAR(11+I), I=1,NDIM in STPNT.

- IEQUIB=-1 : Heteroclinic orbits to hyperbolic equilibria; the equilibria are specified ex-
plicitly in PVLS and stored in PAR(11+I), I=1,NDIM (left-hand equilibrium) and
PAR(11+I), I=NDIM+1,2*NDIM (right-hand equilibrium).

- IEQUIB=-2 : Heteroclinic orbits to hyperbolic equilibria; the equilibria are solved for dur-
ing continuation. Initial values are specified in STPNT and stored in PAR(11+I),
I=1,NDIM (left-hand equilibrium), PAR(11+I), I=NDIM+1,2*NDIM (right-hand equilib-
rium).
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20.3.4 ITWIST

- ITWIST=0 : the orientation of the homoclinic orbit is not computed.

- ITWIST=1 : the orientation of the homoclinic orbit is computed. For this purpose, the
adjoint variational equation is solved for the unique bounded solution. If IRS = 0, an
initial solution to the adjoint equation must be specified as well. However, if IRS>0 and
ITWIST has just been increased from zero, then AUTO will automatically generate the
initial solution to the adjoint. In this case, a dummy Newton-step should be performed,
see Section 20.7 for more details.

20.3.5 ISTART

- ISTART=1 : This option is obsolete in the current version. It may be used as a flag that
a solution is to be restarted from a previously computed point or from numerical data
converted into AUTO format using us or @fc. In this case IRS>0.

- ISTART=2 : If IRS=0, an explicit solution must be specified in the subroutine STPNT
in the usual format.

- ISTART=3 : The “homotopy” approach is used for starting, see Section 20.7 for more
details. Note that this is not available with the choice IEQUIB=2.

- ISTART=4 : A phase-shift is performed for homoclinic orbits to let the equilibrium (either
fixed or non-fixed, depending on IEQUIB) correspond to t = 0 and t = 1. This is necessary
if a periodic orbit that is close to a homoclinic orbit is continued into a homoclinic orbit.

- ISTART=-N, N = 1, 2, 3, . . . : Homoclinic branch switching: this description is for refer-
ence only. We refer to the demo in Chapter 27 to see how this can be used in actual
practice and to Oldeman, Champneys & B. (2003) for theory and background.

The orbit is split into N + 1 parts and AUTO sees it as an (N + 1)× NDIM-dimensional
object. The first part u0 goes from the equilibrium to the point x0 that is furthest from
the equilibrium. Then follow N −1 shifted copies of the orbit, which travel from the point
x0 back to the point x0. The last part UN goes from the point x0 back to the equilibrium.
The derivatives ẋ0 with respect to time of the point that is furthest from the equilibrium
are stored at the parameters PAR(NPARX-NDIM+1...NPARX).

If ITWIST=1, and this was also the case in the preceding run, then a copy of the adjoint
vector Ψ at x0 is stored at the parameters PAR(NPARX-NDIM*2+1...NPARX-NDIM) and
Lin’s method can be used to do homoclinic branch switching. To be more precise, the
individual parts ui and ui+1 are at distances εi away from each other, along the Lin vector
Psi, at the left- and right-hand end points. These gaps εi are at parameters PAR(20+2*i).
Moreover, each part (except uN+1) ends at at a Poincaré section which goes through x0

and is perpendicular to ẋ0.

The times Ti that each part ui takes are stored as follows: T0 = PAR(10), TN = PAR(11)

and Ti = PAR(19+2*i) for i = 1 . . . N−1. Through a continuation in problem parameters,
gaps εi, and times Ti it is possible to switch from a 1-homoclinic to an N -homoclinic orbit.
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If ITWIST=0, the adjoint vector is not computed and Lin’s method is not used. Instead,
AUTO produces a gap ε= PAR(22) at the right-hand end point p of uN+1, measuring the
distance between the stable manifold of the equilibrium and p. This technique can also be
used to find 2-homoclinic orbits, by varying in ε and T1, similar to the method described
before, but only if the unstable manifold in one-dimensional. Because this method is more
limited than the method using Lin vectors, we do not recommend it for normal usage.

To switch back to a normal homoclinic orbit, set ISTART back to a positive value such as
1. Now HomCont has lost all the information about the adjoint, so if ITWIST is set to 0,
HomCont does a normal continuation without the adjoint, and if ITWIST is set to 1, one
needs to do a Newton dummy step first to recalculate the adhoint.

20.3.6 NREV, IREV

If NREV=1 then it is assumed that the system is reversible under the transformation t → −t
and U(i) → −U(i) for all i with IREV(i)>0. Then only half the homoclinic solution is solved
for with right-hand boundary conditions specifying that the solution is symmetric under the
reversibility (see Champneys & Spence (1993)). The number of free parameters is then reduced
by one. Otherwise IREV=0.

20.3.7 NFIXED, IFIXED

Number and labels of test functions that are held fixed. E.g., with NFIXED=1 one can compute
a locus in one extra parameter of a singularity defined by test function PSI(IFIXED(1))=0.

20.3.8 NPSI, IPSI

Number and labels of activated test functions for detecting homoclinic bifurcations, see Sec-
tion 20.6 for a list. If a test function is activated then the corresponding parameter ( IPSI(I)+20)
must be added to the list of continuation parameters NICP,(ICP(I),I=1 NICP) and zero of
this parameter added to the list of user-defined output points NUZR, (/,I,PAR(I)),I=1,

NUZR in c.xxx.

20.4 Restrictions on HomCont Constants.

Note that certain combinations of these constants are not allowed in the present implementation.
In particular,

- The computation of orientation ITWIST=1 is not implemented for IEQUIB<0 (heteroclinic
orbits), IEQUIB=2 (saddle-node homoclinics), IREV=1 (reversible systems), ISTART=3

(homotopy method for starting), or if the equilibrium contains complex eigenvalues in its
linearization.

- The homotopy method ISTART=3 is not fully implemented for heteroclinic connections
IEQUIB<0, saddle-node homoclinic orbits IEQUIB=2 or reversible systems IREV=1.
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- Certain test functions are not valid for certain forms of continuation (see Section 20.6
below); for example PSI(13) and PSI(14) only make sense if ITWIST=1 and PSI(15)

and PSI(16) only apply to IEQUIB=2.

20.5 Restrictions on the Use of PAR.

The parameters PAR(1) – PAR(9) can be used freely by the user. The other parameters are
used as follows :

- PAR(11) : The value of PAR(11) equals the length of the time interval over which a
homoclinic solution is computed. Also referred to as “period”. This must be specified in
STPNT.

- PAR(10) : If ITWIST=1 then PAR(10) is used internally as a dummy parameter so that
the adjoint equation is well-posed.

- PAR(12)-PAR(20) : These are used for specifying the equilibria and (if ISTART=3) the
artificial parameters of the homotopy method (see Section 20.7 below).

- PAR(21)-PAR(36) : These parameters are used for storing the test functions (see Sec-
tion 20.6).

The output is in an identical format to AUTO except that additional information at each
computed point is written in fort.9. This information comprises the eigenvalues of the (left-
hand) equilibrium, the values of each activated test function and, if ITWIST=1, whether the
saddle homoclinic loop is orientable or not. Note that the statement about orientability is only
meaningful if the leading eigenvalues are not complex and the homoclinic solution is not in a
flip configuration, that is, none of the test functions ψi for i = 11, 12, 13, 14 is zero (or close to
zero), see Section 20.6. Finally, the values of the NPSI activated test functions are written.

20.6 Test Functions.

Codimension-two homoclinic orbits are detected along branches of codim 1 homoclinics by lo-
cating zeroes of certain test functions ψi. The test functions that are “switched on” during
any continuation are given by the choice of the labels i, and are specified by the parameters
NPSI,(/,I,IPSI(I)),I=1,NPSI) in h.xxx. Here NPSI gives the number of activated test func-
tions and IPSI(1),. . .,IPSI(NPSI) give the labels of the test functions (numbers between 1
and 16). A zero of each labeled test function defines a certain codimension-two homoclinic singu-
larity, specified as follows. The notation used for eigenvalues is the same as that in Champneys
& Kuznetsov (1994) or Champneys et al. (1996).

- i = 1: Resonant eigenvalues (neutral saddle); µ1 = −λ1.

- i = 2: Double real leading stable eigenvalues (saddle to saddle-focus transition); µ1 = µ2.
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- i = 3: Double real leading unstable eigenvalues (saddle to saddle-focus transition);
λ1 = λ2.

- i = 4: Neutral saddle, saddle-focus or bi-focus (includes i = 1); Re(µ1) = −Re(λ1).

- i = 5: Neutrally-divergent saddle-focus (stable eigenvalues complex);
Re(λ1) = −Re(µ1) − Re(µ2).

- i = 6: Neutrally-divergent saddle-focus (unstable eigenvalues complex);
Re(µ1) = −Re(λ1) − Re(λ2).

- i = 7: Three leading eigenvalues (stable); Re(λ1) = −Re(µ1) − Re(µ2).

- i = 8: Three leading eigenvalues (unstable); Re(µ1) = −Re(λ1) − Re(λ2).

- i = 9: Local bifurcation (zero eigenvalue or Hopf): number of stable eigenvalues decreases;
Re(µ1) = 0.

- i = 10: Local bifurcation (zero eigenvalue or Hopf): number of unstable eigenvalues
decreases; Re(λ1) = 0.

- i = 11: Orbit flip with respect to leading stable direction (e.g., 1D unstable manifold).

- i = 12: Orbit flip with respect to leading unstable direction, (e.g., 1D stable manifold).

- i = 13: Inclination flip with respect to stable manifold (e.g., 1D unstable manifold).

- i = 14: Inclination flip with respect to unstable manifold (e.g., 1D stable manifold).

- i = 15: Non-central homoclinic to saddle-node (in stable manifold).

- i = 16: Non-central homoclinic to saddle-node (in unstable manifold).

Expert users may wish to add their own test functions by editing the function PSIHO in
autlib5.f.

It is important to remember that, in order to specify activated test functions, it is required
to also add the corresponding label +20 to the list of continuation parameters and a zero of
this parameter to the list of user-defined output points. Having done this, the corresponding
parameters are output to the screen and zeros are accurately located.

20.7 Starting Strategies.

There are four possible starting procedures for continuation.

(i) Data can be read from a previously-obtained output point from AUTO (e.g., from contin-
uation of a periodic orbit up to large period; note that if the end-point of the data stored
is not close to the equilibrium, a phase shift must be performed by setting ISTART=4).
These data can be read from fort.8 (saved to s.xxx) by making IRS correspond to the
label of the data point in question.

177



(ii) Data from numerical integration (e.g., computation of a stable periodic orbit, or an ap-
proximate homoclinic obtained by shooting) can be read in from a data file using the
general AUTO utility @fc or us (see earlier in the manual). The numerical data should
be stored in a file xxx.dat, in multi-column format according to the read statement

READ(...,*) T(J),(U(I,J),I=1,NDIM)

where T runs in the interval [0,1]. After running @fc or us the restart data is stored
in the format of a previously computed solution in s.dat. When starting from this solution
IRS should be set to 1 and the value of ISTART is irrelevant.

(iii) By setting ISTART=2, an explicit homoclinic solution can be specified in the routine
STPNT in the usual AUTO format, that is U = ...(T ) where T is scaled to lie in the
interval [0, 1].

(iv) The choice ISTART=3, allows for a homotopy method to be used to approach a homoclinic
orbit starting from a small approximation to a solution to the linear problem in the unstable
manifold (Doedel, Friedman & Monteiro 1993). For details of implementation, the reader is
referred to Section 5.1.2. of Champneys & Kuznetsov (1994), under the simplification that
we do not solve for the adjoint u(t) here. The basic idea is to start with a small solution
in the unstable manifold, and perform continuation in PAR(11)=2T and dummy initial-
condition parameters ξi in order to satisfy the correct right-hand boundary conditions,
which are defined by zeros of other dummy parameters ωi. More precisely, the left-hand
end point is placed in the tangent space to the unstable manifold of the saddle and is
characterized by NUNSTAB coordinates ξi satisfying the condition

ξ2
1 + ξ2

2 + . . .+ ξ2
NUNSTAB

= ǫ20,

where ǫ0 is a user-defined small number. At the right-hand end point, NUNSTUB values ωi

measure the deviation of this point from the tangent space to the stable manifold of the
saddle.

Suppose that IEQUIB=0,1 and set IP=12+IEQUIB*NDIM. Then

PAR(IP) : ǫ0
PAR(IP+i) : ξi, i=1,2,...,NUNSTAB

PAR(IP+NUNSTAB+i) : ωi, i=1,2,...,NUNSTAB

Note that to avoid interference with the test functions (i.e. PAR(21)-PAR(36)), one
must have IP+2*NUNSTAB < 21.

If an ωi is vanished, it can be frozen while another dummy or system parameter is allowed
to vary in order to make consequently all ωi = 0. The resulting final solution gives the
initial homoclinic orbit provided the right-hand end point is sufficiently close to the saddle.
See Chapter 23 for an example, however, we recommend the homotopy method only for
“expert users”.
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To compute the orientation of a homoclinic orbit (in order to detect inclination-flip bifur-
cations) it is necessary to compute, in tandem, a solution to the modified adjoint variational
equation, by setting ITWIST=1. In order to obtain starting data for such a computation when
restarting from a point where just the homoclinic is computed, upon increasing ITWIST to 1,
AUTO generates trivial data for the adjoint. Because the adjoint equations are linear, only a
single step of Newton’s method is required to enable these trivial data to converge to the correct
unique bounded solution. This can be achieved by making a single continuation step in a trivial
parameter (i.e. a parameter that does not appear in the problem).

Decreasing ITWIST to 0 automatically deletes the data for the adjoint from the continuation
problem.

20.8 Notes on Running HomCont Demos.

HomCont demos are given in the following chapters. To copy all files of a demo xxx (for example,
san), move to a clean directory and type demo(’xxx’). Simply typing make or make all will then
automatically execute all runs of the demo. At each step, the user is encouraged to plot the
data saved by using the command plot (e.g., plot(’1’) plots the data saved in b.1 and s.1).

Of course, in a real application, the runs will not have been prepared in advance, and AUTO-
commands must be used. Such commands can be found in a table at the end of each chapter. A
sequence of detailed AUTO -commands will be given in these tables as illustrated in Table 20.1
and Table 20.2 for two representative runs of HomCont demo san.

The user is encouraged to copy the format of one of these demos when constructing new
examples.

The output of the HomCont demos reproduced in the following chapters is somewhat machine
dependent, as already noted in Section 12.4. In exceptional circumstances, AUTO may reach
its maximum number of steps NMX before a certain output point, or the label of an output
point may change. In such case the user may have to make appropriate changes in the AUTO
constants-files.

COMMAND ACTION
ld(’san’) load the problem defition
run(c=’san.1’,h=’san.1’) get the HomCont constants-file and run AUTO /HomCont
sv(’6’) save output-files as b.6, s.6, d.6
@H san 1
@sv 6

Table 20.1: These two sets of AUTO-Commands are equivalent.
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COMMAND ACTION
run(c=’san.9’,h=’san.9’,s=’6’) get the HomCont constants-file and run

AUTO /HomCont; restart solution read
from s.6

ap(’6’) append output-files to b.6, s.6, d.6
@H san 9 6
@ap 6

Table 20.2: These two sets of AUTO-Commands are equivalent.
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Chapter 21

HomCont Demo : san.

21.1 Sandstede’s Model.

Consider the system (Sandstede 1995a)

ẋ = a x+ b y − a x2 + (µ̃− α z)x (2 − 3x)
ẏ = b x+ a y − 3

2
b x2 − 3

2
a x y − (µ̃− α z) 2 y

ż = c z + µx+ γ x y + αβ (x2 (1 − x) − y2)
(21.1)

as given in the file san.f. Choosing the constants appearing in (21.1) appropriately allows
for computing inclination and orbit flips as well as non-orientable resonant bifurcations, see
(Sandstede 1995a) for details and proofs. The starting point for all calculations is a = 0, b = 1
where there exists an explicit solution given by

(x(t), y(t), z(t)) =

(

1 −
(

1 − et

1 + et

)2

, 4 et 1 − et

(1 + et)3
, 0

)

.

This solution is specified in the routine STPNT.

21.2 Inclination Flip.

We start by copying the demo to the current work directory and running the first step

@dm san

make first

This computation starts from the analytic solution above with a = 0, b = 1, c = −2, α = 0,
β = 1 and γ = µ = µ̃ = 0. The homoclinic solution is followed in the parameters (a, µ̃)
=(PAR(1), PAR(8)) up to a = 0.25. The output is summarised on the screen as

BR PT TY LAB PAR(1) L2-NORM PAR(8)

1 1 EP 1 0.000000E+00 4.000000E-01 ... 0.000000E+00

1 5 UZ 2 2.500000E-01 4.030545E-01 ... -3.620329E-11

1 10 EP 3 7.384434E-01 4.339575E-01 ... -9.038826E-09
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and saved in more detail as b.1, s.1 and d.1.
Next we want to add a solution to the adjoint equation to the solution obtained at a = 0.25.

This is achieved by making the change ITWIST = 1 saved in h.san.2, and IRS = 2, NMX =

2 and ICP(1) = 9 saved in c.san.2. We also disable any user-defined functions NUZR=0. The
computation so-defined is a single step in a trivial parameter PAR(9) (namely a parameter that
does not appear in the problem). The effect is to perform a Newton step to enable AUTO to
converge to a solution of the adjoint equation.

make second

The output is stored in b.2, s.2 and d.2.
We can now continue the homoclinic plus adjoint in (α, µ̃) =(PAR(4), PAR(8)) by chang-

ing the constants (stored in c.san.3) to read IRS = 4, NMX = 50 and ICP(1) = 4. We
also add PAR(10) to the list of continuation parameters NICP,(ICP(I),I=1 NICP). Here
PAR(10) is a dummy parameter used in order to make the continuation of the adjoint well
posed. Theoretically, it should be zero if the computation of the adjoint is successful (Sandstede
1995a). The test functions for detecting resonant bifurcations ( ISPI(1)=1) and inclination
flips ( ISPI(1)=13) are also activated. Recall that this should be specified in three ways. First
we add PAR(21) and PAR(33) to the list of continuation parameters in c.san.3, second we set
up user defined output at zeros of these parameters in the same file, and finally we set NPSI=2

(IPSI(1),IPSI(2))=1,13 in h.san.3. We also add to c.san.3 another user zero for detecting
when PAR(4)=1.0. Running

make third

reads starting data from s.2 and outputs to the screen

BR PT TY LAB PAR(4) ... PAR(8) PAR(10) ... PAR(33)

1 20 5 7.847219E-01 ... -3.001440E-11 -4.268884E-09 ... -1.441124E+01

1 27 UZ 6 1.000000E+00 ... -3.844872E-11 -4.460769E-09 ... -5.701675E+00

1 35 UZ 7 1.230857E+00 ... -5.833977E-11 -4.530541E-09 ... 9.434843E-06

1 40 8 1.383969E+00 ... -8.133899E-11 -4.671817E-09 ... 1.348810E+00

1 50 EP 9 1.695209E+00 ... -1.386324E-10 -5.098460E-09 ... 5.311065E-01

Full output is stored in b.3, s.3 and d.3. Note that the artificial parameter ǫ = PAR(10) is zero
within the allowed tolerance. At label 7, a zero of test function ψ13 has been detected which
corresponds to an inclination flip with respect to the stable manifold. That the orientation
of the homoclinic loop changes as the family passes through this point can be read from the
information in d.3. However in d.3, the line

ORIENTABLE ( 0.2982090775D-03)

at PT=35 would seems to contradict the detection of the inclination flip at this point. Nonethe-
less, the important fact is the zero of the test function; and note that the value of the variable
indicating the orientation is small compared to its value at the other regular points. Data for
the adjoint equation at LAB= 5, 7 and 9 at and on either side of the inclination flip are pre-
sented in Fig. 21.1. The switching of the solution between components of the leading unstable
left eigenvector is apparent. Finally, we remark that the Newton step in the dummy parameter
PAR(20) performed above is crucial to obtain convergence. Indeed, if instead we try to continue
the homoclinic orbit and the solution of the adjoint equation directly by setting
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ITWIST = 1 IRS = 2 NMX = 50 ICP(1) = 4 NPUSZR = 0

(as saved in c.san.4) and running

make fourth

we obtain a no convergence error.

21.3 Non-orientable Resonant Eigenvalues.

Inspecting the output saved in the third run, we observe the existence of a non-orientable
homoclinic orbit at label 7 corresponding to N=40. We restart at this label, with the first
continuation parameter being once again a = PAR(1), by changing constants and storing them
in c.san.5 according to

IRS = 7 DS = -0.05D0 NMX = 20 ICP(1) = 1

Running,

make fifth

the output at label 10

BR PT TY LAB PAR(1) PAR(8) PAR(10) PAR(21)

1 8 UZ 10 -1.304570E-07 ... 3.874816E-12 -1.468457E-09 -2.609139E-07

indicates that AUTO has detected a zero of PAR(21), implying that a non-orientable resonant
bifurcation occurred at that point.

21.4 Orbit Flip.

In this section we compute an orbit flip. To this end we restart from the original explicit
solution, without computing the orientation. We begin by separately performing continuation
in (α, µ̃), (β, µ̃), (a, µ̃), (b, µ̃) and (µ, µ̃) in order to reach the parameter values (a, b, α, β, µ) =
(0.5, 3, 1, 0, 0.25). The sequence of continuations up to the desired parameter values are run via

make sixth
make seventh
make eighth
make ninth
make tenth

with appropriate continuation parameters and user output values set in the corresponding files
c.san.xx. All the output is saved to s.6.

The final saved point LAB=10 contains a homoclinic solution at the desired parameter values.
From here we perform continuation in the negative direction of (µ, µ̃) = ( PAR(7),PAR(8)) with
the test function ψ11 for orbit flips with respect to the stable manifold activated.
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make eleventh

The output detects an inclination flip (by a zero of PAR(31)) at PAR(7)=0

BR PT TY LAB PAR(7) ... PAR(8) PAR(31)

1 5 UZ 12 2.394737E-07 ... 6.434492E-08 -4.133994E-06

at which parameter value the homoclinic orbit is contained in the (x, y)-plane (see Fig. 21.2).
Finally, we demonstrate that the orbit flip can be continued as three parameters ( PAR(6),

PAR(7), PAR(8)) are varied.

make twelfth

BR PT TY LAB PAR(7) ... PAR(8) PAR(6)

1 5 14 -5.374538E-19 ... -1.831991E-10 -3.250000E-01

1 10 15 -6.145911E-19 ... -2.628607E-10 -8.250001E-01

1 15 16 -4.947133E-19 ... -2.361151E-10 -1.325000E+00

1 20 EP 17 -5.792940E-19 ... -3.075527E-10 -1.825000E+00

The orbit flip continues to be defined by a planar homoclinic orbit at PAR(7)=PAR(8)=0.
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21.5 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir san create an empty work directory
cd san change directory
demo(’san’) copy the demo files to the work directory
run(c=’san.1’,h=’san.1’) continuation in PAR(1)

sv(’1’) save output-files as b.1, s.1, d.1
run(c=’san.2’,h=’san.2’,s=’1’) generate adjoint variables; restart from s.1
sv(’2’) save output-files as b.2, s.2, d.2
run(c=’san.3’,h=’san.3’,s=’2’) continue homoclinic orbit and adjoint; restart from s.2
sv(’3’) save output-files as b.3, s.3, d.3
run(c=’san.4’,h=’san.4’,s=’1’) no convergence without dummy step; restart from s.1
sv(’4’) save output-files as b.4, s.4, d.4
run(c=’san.5’,h=’san.5’,s=’3’) continue non-orientable orbit; restart from s.3
sv(’5’) save output-files as b.5, s.5, d.5

Table 21.1: Detailed AUTO -Commands for running demo san.
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AUTO -COMMAND ACTION
run(c=’san.6’,h=’san.6’,s=’san’) restart and homotopy to PAR(4)=1.0
sv(’6’) save output-files as b.6, s.6, d.6
run(c=’san.7’,h=’san.7’,s=’6’) homotopy to PAR(5)=0.0; restart from s.6
ap(’6’) append output-files to b.6, s.6, d.6
run(c=’san.8’,h=’san.8’,s=’6’) homotopy to PAR(1)=0.5; restart from s.6
ap(’6’) append output-files to b.6, s.6, d.6
run(c=’san.9’,h=’san.9’,s=’6’) homotopy to PAR(2)=3.0; restart from s.6
ap(’6’) append output-files to b.6, s.6, d.6
run(c=’san.10’,h=’san.10’,s=’6’) homotopy to PAR(7)=0.25; restart from s.6
ap(’6’) append output-files to b.6, s.6, d.6
run(c=’san.11’,h=’san.11’,s=’6’) continue in PAR(7) to detect orbit flip; restart from s.6
sv(’11’) save output-files as b.11, s.11, d.11
run(c=’san.12’,h=’san.12’,s=’11’) three-parameter continuation of orbit flip; restart from s.11
sv(’12’) save output-files as b.12, s.12, d.12

Table 21.2: Detailed AUTO -Commands for running demo san.
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Figure 21.1: Second versus third component of the solution to the adjoint equation at labels 5,
7 and 9
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Figure 21.2: Orbits on either side of the orbit flip bifurcation. The critical orbit is contained in
the (x, y)-plane
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Chapter 22

HomCont Demo : mtn.

22.1 A Predator-Prey Model with Immigration.

Consider the following system of two equations (Scheffer 1995)

Ẋ = RX

(

1 − X

K

)

− A1XY

B1 +X
+D0K

Ẏ = E1
A1XY

B1 +X
−D1Y − A2ZY

2

B2
2 + Y 2

.
(22.1)

The values of all parameters except (K,Z) are set as follows :

R = 0.5, A1 = 0.4, B1 = 0.6, D0 = 0.01, E1 = 0.6, A2 = 1.0, B2 = 0.5, D1 = 0.15.

The parametric portrait of the system (22.1) on the (Z,K)-plane is presented in Figure 22.1. It
contains fold (t1,2) and Hopf (H) bifurcation curves, as well as a homoclinic bifurcation curve
P . The fold curves meet at a cusp singular point C, while the Hopf and the homoclinic curves
originate at a Bogdanov-Takens point BT . Only the homoclinic curve P will be considered
here, the other bifurcation curves can be computed using AUTO or, for example, locbif (Khibnik,
Kuznetsov, Levitin & Nikolaev 1993).

22.2 Continuation of Central Saddle-Node Homoclinics.

Local bifurcation analysis shows that at K = 6.0, Z = 0.06729762 . . ., the system has a saddle-
node equilibrium

(X0, Y 0) = (5.738626 . . . , 0.5108401 . . .),

with one zero and one negative eigenvalue. Direct simulations reveal a homoclinic orbit to this
saddle-node, departing and returning along its central direction (i.e., tangent to the null-vector).

Starting from this solution, stored in the file mtn.dat, we continue the saddle-node central
homoclinic orbit with respect to the parameters K and Z by copying the demo and running it

@dm mtn
make first
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The file mtn.f contains approximate parameter values

K = PAR(1) = 6.0, Z = PAR(2) = 0.06729762,

as well as the coordinates of the saddle-node

X0 = PAR(12) = 5.738626, Y 0 = PAR(13) = 0.5108401,

and the length of the truncated time-interval

T0 = PAR(11) = 1046.178 .

Since a homoclinic orbit to a saddle-node is being followed, we have also made the choices

IEQUIB = 2 NUNSTAB = 0 NSTAB = 1

in h.mtn.1. The two test-functions, ψ15 and ψ16, to detect non-central saddle-node homoclinic
orbits are also activated, which must be specified in three ways. Firstly, in h.mtn.1, NPSI is
set to 2 and the active test functions IPSI(I),I=1,2 are chosen as 15 and 16. This sets up
the monitoring of these test functions. Secondly, in c.mtn.1 user-defined functions (NUZR=2)
are set up to look for zeros of the parameters corresponding to these test functions. Recall that
the parameters to be zeroed are always the test functions plus 20. Finally, these parameters are
included in the list of continuation parameters (NICP,(ICP(I),I=1 NICP)).

Among the output there is a line

BR PT TY LAB PAR(1) ... PAR(2) PAR(35) PAR(36)

1 27 UZ 5 6.10437E+00 ... 6.932475E-02 -6.782898E-07 8.203437E-02

indicating that a zero of the test function IPSI(1)=15 This means that at

D1 = (K1, Z1) = (6.6104 . . . , 0.069325 . . .)

the homoclinic orbit to the saddle-node becomes non-central, namely, it returns to the equilib-
rium along the stable eigenvector, forming a non-smooth loop. The output is saved in b.1, s.1
and d.1. Repeating computations in the opposite direction along the curve, IRS=1, DS=-0.01

in c.mtn.2,

make second

one obtains

BR PT TY LAB PAR(1) ... PAR(2) PAR(35) PAR(36)

1 34 UZ 9 5.180323E+00 ... 6.385506E-02 3.349720E-09 9.361957E-02

which means another non-central saddle-node homoclinic bifurcation occurs at

D2 = (K2, Z2) = (5.1803 . . . , 0.063855 . . .).

Note that these data were obtained using a smaller value of NTST than the original computation
(compare c.mtn.1 with c.mtn.2). The high original value of NTST was only necessary for the
first few steps because the original solution is specified on a uniform mesh.
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22.3 Switching between Saddle-Node and Saddle Homo-

clinic Orbits.

Now we can switch to continuation of saddle homoclinic orbits at the located codim 2 points
D1 and D2.

make third

starts from D1. Note that now

NUNSTAB = 1 IEQUIB = 1

has been specified in h.mtn.3. Also, test functions ψ9 and ψ10 have been activated in order to
monitor for non-hyperbolic equilibria along the homoclinic locus. We get the following output

BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)

1 10 11 7.114523E+00 ... 7.081751E-02 -4.649861E-01 3.183429E-03

1 20 12 9.176810E+00 ... 7.678731E-02 -4.684912E-01 1.609294E-02

1 30 13 1.210834E+01 ... 8.543468E-02 -4.718871E-01 3.069638E-02

1 40 EP 14 1.503788E+01 ... 9.428036E-02 -4.743794E-01 4.144558E-02

The fact that PAR(29) and PAR(30) do not change sign indicates that there are no further
non-hyperbolic equilibria along this family. Note that restarting in the opposite direction with
IRS=11, DS=-0.02

make fourth

will detect the same codim 2 point D1 but now as a zero of the test-function ψ10

BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)

1 10 UZ 15 6.610459E+00 ... 6.932482E-02 -4.636603E-01 1.725013E-09

Note that the values of PAR(1) and PAR(2) differ from that at label 4 only in the sixth significant
figure.

Actually, the program runs further and eventually computes the point D2 and the whole
lower family of P emanating from it, however, the solutions between D1 and D2 should be
considered as spurious1, therefore we do not save these data. The reliable way to compute the
lower family of P is to restart computation of saddle homoclinic orbits in the other direction
from the point D2

make fifth

This gives the lower family of P approaching the BT point (see Figure 22.1)

1 The program actually computes the saddle-saddle heteroclinic orbit bifurcating from the non-central saddle-
node homoclinic at the point D1, see Champneys et al. (1996, Fig. 2), and continues it to the one emanating
from D2.

190



BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)

1 10 15 4.966429E+00 ... 6.298418E-02 -4.382426E-01 4.946824E-03

1 20 16 4.925379E+00 ... 7.961214E-02 -3.399102E-01 3.288447E-02

1 30 17 7.092267E+00 ... 1.587114E-01 -1.692842E-01 3.876291E-02

1 40 EP 18 1.101819E+01 ... 2.809825E-01 -3.482651E-02 2.104384E-02

The data are appended to the stored results in b.1, s.1 and d.1. One could now display all
data using the AUTO command @p 1 to reproduce the curve P shown in Figure 22.1.

It is worthwhile to compare the homoclinic curves computed above with a curve T0 = const
along which the system has a limit cycle of constant large period T0 = 1046.178, which can
easily be computed using AUTO or locbif. Such a curve is plotted in Figure 22.2. It obviously
approximates well the saddle homoclinic loci of P , but demonstrates much bigger deviation
from the saddle-node homoclinic segment D1D2. This happens because the period of the limit
cycle grows to infinity while approaching both types of homoclinic orbit, but with different
asymptotics: as − ln ‖α − α∗‖, in the saddle homoclinic case, and as ‖α − α∗‖−1 in the saddle-
node case.

22.4 Three-Parameter Continuation.

Finally, we can follow the curve of non-central saddle-node homoclinic orbits in three parame-
ters. The extra continuation parameter is D0=PAR(3). To achieve this we restart at label 4,
corresponding to the codim 2 point D1. We return to continuation of saddle-node homoclinics,
NUNSTAB=0,IEQUIB=2, but append the defining equation ψ15 = 0 to the continuation problem
(via NFIXED=1, IFIXED(1)=15). The new continuation problem is specified in c.mtn.6 and
h.mtn.6.

make sixth

Notice that we set ILP=1 and choose PAR(3) as the first continuation parameter so that AUTO can
detect limit points with respect to this parameter. We also make a user-defined function
(NUZR=1) to detect intersections with the plane D0 = 0.01. We get among other output

BR PT TY LAB PAR(3) L2-NORM ... PAR(1) PAR(2)

1 22 LP 19 1.081212E-02 5.325894E+00 ... 5.673631E+00 6.608184E-02

1 31 UZ 20 1.000000E-02 4.819681E+00 ... 5.180317E+00 6.385503E-02

the first line of which represents the D0 value at which the homoclinic curve P has a tangency
with the family t2 of fold bifurcations. Beyond this value of D0, P consists entirely of saddle
homoclinic orbits. The data at label 20 reproduce the coordinates of the point D2. The results
of this computation and a similar one starting from D1 in the opposite direction (with DS=-0.01)
are displayed in Figure 22.3.
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22.5 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir mtn create an empty work directory
cd mtn change directory
demo(’mtn’) copy the demo files to the work directory
us(’mtn’) use the starting data in mtn.dat to create s.dat

run(c=’mtn.1’,h=’mtn.1’,s=’dat’) continue saddle-node homoclinic orbit
sv(’1’) save output-files as b.1, s.1, d.1

run(c=’mtn.2’,h=’mtn.2’,s=’1’) continue in opposite direction; restart from s.1

ap(’1’) append output-files to b.1, s.1, d.1

run(c=’mtn.3’,h=’mtn.3’,s=’1’) switch to saddle homoclinic orbit ; restart from s.1

ap(’1’) append output-files to b.1, s.1, d.1

run(c=’mtn.4’,h=’mtn.4’,s=’1’) continue in reverse direction; restart from s.1

sv(’4’) save output-files as b.4, s.4, d.4

run(c=’mtn.5’,h=’mtn.5’,s=’1’) other saddle homoclinic orbit family; restart from s.1

ap(’1’) append output-files to b., s.1, d.1

run(c=’mtn.6’,h=’mtn.6’,s=’1’) 3-parameter non-central saddle-node homoclinic.
sv(’6’) save output-files as b.6, s.6, d.6

Table 22.1: Detailed AUTO -Commands for running demo mtn.
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Figure 22.1: Parametric portrait of the predator-prey system

Figure 22.2: Approximation by a large-period cycle
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Figure 22.3: Projection onto the (K,D0)-plane of the three-parameter curve of non-central
saddle-node homoclinic orbit

194



Chapter 23

HomCont Demo : kpr.

23.1 Koper’s Extended Van der Pol Model.

The equation-file kpr.f contains the equations

ẋ = ǫ−1
1 (k y − x3 + 3 x− λ)

ẏ = x− 2 y + z
ż = ǫ2(y − z),

(23.1)

with ǫ1 = 0.1 and ǫ2 = 1 (Koper 1995).
To copy across the demo kpr and compile we type

@dm kpr

23.2 The Primary Branch of Homoclinics.

First, we locate a homoclinic orbit using the homotopy method. The file kpr.f already contains
approximate parameter values for a homoclinic orbit, namely λ = PAR(1)=-1.851185, k =
PAR(2)=-0.15. The files c.kpr.1 and h.kpr.1 specify the appropriate constants for continuation
in 2T =PAR(11) (also referred to as PERIOD) and the dummy parameter ω1= PAR(17) starting
from a small solution in the local unstable manifold;

make first

Among the output there is the line

BR PT TY LAB PERIOD L2-NORM ... PAR(17) ...

1 29 UZ 2 1.900184E+01 1.693817E+00 ... 4.433433E-09 ...

which indicates that a zero of the artificial parameter ω1 has been located. This means that the
right-hand end point of the solution belongs to the plane that is tangent to the stable manifold
at the saddle. The output is stored in files b.1, s.1, d.1. Upon plotting the data at label 2

(see Figure 23.1) it can be noted that although the right-hand projection boundary condition is
satisfied, the solution is still quite away from the equilibrium.
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Figure 23.1: Projection on the (x, y)-plane of solutions of the boundary value problem with
2T = 19.08778.
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Figure 23.2: Projection on the (x, y)-plane of solutions of the boundary value problem with
2T = 60.0.
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The right-hand endpoint can be made to approach the equilibrium by performing a further
continuation in T with the right-hand projection condition satisfied ( PAR(17) fixed) but with
λ allowed to vary.

make second

the output at label 4, stored in kpr.2,

BR PT TY LAB PERIOD L2-NORM ... PAR(1) ...

1 35 UZ 4 6.000000E+01 1.672806E+00 ... -1.851185E+00 ...

provides a good approximation to a homoclinic solution (see Figure 23.2).
The second stage to obtain a starting solution is to add a solution to the modified adjoint

variational equation. This is achieved by setting both ITWIST and ISTART to 1 (in h.kpr.3),
which generates a trivial guess for the adjoint equations. Because the adjoint equations are
linear, only a single Newton step (by continuation in a trivial parameter) is required to provide
a solution. Rather than choose a parameter that might be used internally by AUTO , in c.kpr.3
we take the continuation parameter to be PAR(11), which is not quite a trivial parameter but
whose affect upon the solution is mild.

make third

The output at the second point (label 6) contains the converged homoclinic solution (variables
( U(1), U(2), U(3)) and the adjoint ( U(4), U(5), U(6))). We now have a starting solution
and are ready to perform two-parameter continuation.

The fourth run

make fourth

continues the homoclinic orbit in PAR(1) and PAR(2). Note that several other parameters
appear in the output. PAR(10) is a dummy parameter that should be zero when the adjoint
is being computed correctly; PAR(29), PAR(30), PAR(33) correspond to the test functions
ψ9,ψ10 and ψ13. That these test functions were activated is specified in three places in c.kpr.4
and h.kpr.4 as described in Section 20.6.

Note that at the end-point of the family (reached when after NMX=50 steps) PAR(29) is
approximately zero which corresponds to a zero of ψ9, a non-central saddle-node homoclinic
orbit. We shall return to the computation of this codimension-two point later. Before reaching
this point, among the output we find two zeroes of PAR(33) (test function ψ13) which gives the
accurate location of two inclination-flip bifurcations,

BR PT TY LAB PAR(1) ... PAR(2) PAR(10) ... PAR(33)

1 6 UZ 10 -1.801662E+00 ... -2.002660E-01 -7.255434E-07 ... -1.425714E-04

1 12 UZ 11 -1.568756E+00 ... -4.395468E-01 -2.156353E-07 ... 4.514073E-07

That the test function really does have a regular zero at this point can be checked from the data
saved in b.3, plotting PAR(33) as a function of PAR(1) or PAR(2). Figure 23.3 presents solu-
tions φ(t) of the modified adjoint variational equation (for details see Champneys et al. (1996))
at parameter values on the homoclinic family before and after the first detected inclination
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Figure 23.3: Projection on the (x, y)-plane of solutions φ(t) at 1 (λ = −1.825470, k =
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Figure 23.5: Computed homoclinic orbits approaching the BT point

flip. Note that these solutions were obtained by choosing a smaller step DS and more output
(smaller NPR) in c.kpr.4. A blow-up of the region close to the origin of this figure is shown in
Figure 23.4. It illustrates the flip of the solutions of the adjoint equation while moving through
the bifurcation point. Note that the data in this figure were plotted after first performing an
additional continuation of the solutions with respect to PAR(11).

Continuing in the other direction

make fifth

we approach a Bogdanov-Takens point

BR PT TY LAB PAR(1) ... PAR(10) ... PAR(33)

1 50 EP 13 -1.938276E+00 ... -7.523344E+00 ... 6.310810E+01

Note that the numerical approximation has ceased to become reliable, since PAR(10) has now
become large. Phase portraits of homoclinic orbits between the BT point and the first inclination
flip are depicted in Figure 23.5. Note how the computed homoclinic orbits approaching the BT
point have their endpoints well away from the equilibrium. To follow the homoclinic orbit to
the BT point with more precision, we would need to first perform continuation in T ( PAR(11))
to obtain a more accurate homoclinic solution.

23.3 More Accuracy and Saddle-Node Homoclinic Or-

bits.

Continuation in T in order to obtain an approximation of the homoclinic orbit over a longer
interval is necessary for parameter values near a non-hyperbolic equilibrium (either a saddle-
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node or BT) where the convergence to the equilibrium is slower. First, we start from the original
homoclinic orbit computed via the homotopy method, label 4, which is well away from the non-
hyperbolic equilibrium. Also, we shall no longer be interested in in inclination flips so we set
ITWIST=0 in c.kpr.6, and in order to compute up to PAR(11)=1000, we set up a user-defined
function for this. Running AUTO with PAR(11) and PAR(2) as free parameters

make sixth

we obtain among the output

BR PT TY LAB PERIOD L2-NORM ... PAR(2)

1 35 UZ 6 1.000000E+03 1.661910E+00 ... -1.500000E-01

We can now repeat the computation of the family of saddle homoclinic orbits in PAR(1)

and PAR(2) from this point with the test functions ψ9 and ψ10 for non-central saddle-node
homoclinic orbits activated

make seventh

The saddle-node point is now detected at

BR PT TY LAB PAR(1) ... PAR(2) PAR(29) PAR(30)

1 30 UZ 8 1.765003E-01 ... -2.405345E+00 2.743361E-06 2.309317E+01

which is stored in s.7. That PAR(29) (ψ9) is zeroed shows that this is a non-central saddle-node
connecting the centre manifold to the strong stable manifold. Note that all output beyond this
point, although a well-posed solution to the boundary-value problem, is spurious in that it no
longer represents a homoclinic orbit to a saddle equilibrium (see Champneys et al. (1996)). If
we had chosen to, we could continue in the other direction in order to approach the BT point
more accurately by reversing the sign of DS in c.kpr.7.

The files c.kpr.9 and h.kpr.9 contain the constants necessary for switching to continuation
of the central saddle-node homoclinic curve in two parameters starting from the non-central
saddle-node homoclinic orbit stored as label 8 in s.7.

make eighth

In this run we have activated the test functions for saddle to saddle-node transition points along
curves of saddle homoclinic orbits (ψ15 and ψ16). Among the output we find

BR PT TY LAB PAR(1) ... PAR(2) PAR(35) PAR(36)

1 38 UZ 13 1.765274E-01 ... -2.405284E+00 9.705426E-03 -5.464784E-07

which corresponds to the family of homoclinic orbits leaving the locus of saddle-nodes in a
second non-central saddle-node homoclinic bifurcation (a zero of ψ16).

Note that the parameter values do not vary much between the two codimension-two non-
central saddle-node points (labels 8 and 13). However, Figure 23.6 shows clearly that between
the two codimension-two points the homoclinic orbit rotates between the two components of
the 1D stable manifold, i.e. between the two boundaries of the center-stable manifold of the
saddle node. The overall effect of this process is the transformation of a nearby “small” saddle
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Figure 23.6: Two non-central saddle-node homoclinic orbits, 1 and 3; and, 2, a central
saddle-node homoclinic orbit between these two points

x

y

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1

2
3

4

5

6

7

8
9

10

Figure 23.7: The big homoclinic orbit approaching a figure-of-eight
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homoclinic orbit to a “big” saddle homoclinic orbit (i.e. with two extra turning points in phase
space).

Finally, we can switch to continuation of the big saddle homoclinic orbit from the new codim
2 point at label 13.

make ninth

Note that AUTO takes a large number of steps near the line PAR(1)=0, while PAR(2) ap-
proaches −2.189 . . . (which is why we chose such a large value NMX=500 in c.kpr.9). This
particular computation ends at

BR PT TY LAB PAR(1) L2-NORM ... PAR(2)

1 500 EP 24 -1.218988E-05 2.181205E-01 ... -2.189666E+00

By plotting phase portraits of orbits approaching this end point (see Figure 23.7) we see a
“canard-like” like transformation of the big homoclinic orbit to a pair of homoclinic orbits in a
figure-of-eight configuration. That we get a figure-of-eight is not a surprise because PAR(1)=0

corresponds to a symmetry in the differential equations (Koper 1994); note also that the equilib-
rium, stored as ( PAR(12), PAR(13), PAR(14)) in d.9, approaches the origin as we approach
the figure-of-eight homoclinic.

23.4 Three-Parameter Continuation.

We now consider curves in three parameters of each of the codimension-two points encountered
in this model, by freeing the parameter ǫ = PAR(3). First we continue the first inclination flip
stored at label 7 in s.3

make tenth

Note that ITWIST=1 in h.kpr.10, so that the adjoint is also continued, and there is one fixed
condition IFIXED(1)=13 so that test function ψ13 has been frozen. Among the output there
is a codimension-three point (zero of ψ9) where the neutrally twisted homoclinic orbit collides
with the saddle-node curve

BR PT TY LAB PAR(1) ... PAR(2) PAR(3) PAR(29) ...

1 28 UZ 14 1.282702E-01 ... -2.519325E+00 5.744770E-01 -4.347113E-09 ...

The other detected inclination flip (at label 8 in s.3) is continued similarly

make eleventh

giving among its output another codim 3 saddle-node inclination-flip point

BR PT TY LAB PAR(1) ... PAR(2) PAR(3) PAR(29) ...

1 27 UZ 14 1.535420E-01 ... -2.458100E+00 1.171705E+00 -1.933188E-07 ...
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Output beyond both of these codim 3 points is spurious and both computations end in an MX

point (no convergence).
To continue the non-central saddle-node homoclinic orbits it is necessary to work on the data

without the solution φ(t). We restart from the data saved at LAB=8 and LAB=13 in s.7 and
s.8 respectively. We could continue these codim 2 points in two ways, either by appending the
defining condition ψ16 = 0 to the continuation of saddle-node homoclinic orbits (with IEQUIB=2,
etc.), or by appending ψ9 = 0 to the continuation of a saddle homoclinic orbit (with IEQUIB=1.
The first approach is used in the example mtn, for contrast we shall adopt the second approach
here.

make twelfth

make thirteenth

The projection onto the (ǫ, k)-plane of all four of these codimension-two curves is given in
Figure 23.8. The intersection of the inclination-flip lines with one of the non-central saddle-
node homoclinic lines is apparent. Note that the two non-central saddle-node homoclinic orbit
curves are almost overlaid, but that as in Figure 23.6 the orbits look quite distinct in phase
space.

23.5 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir kpr create an empty work directory
cd kpr change directory
demo(’kpr’) copy the demo files to the work directory
run(c=’kpr.1’,h=’kpr.1’) continuation in the time-length parameter PAR(11)

sv(’1’) save output-files as b.1, s.1, d.1
run(c=’kpr.2’,h=’kpr.2’,s=’1’) locate the homoclinic orbit; restart from s.1
sv(’2’) save output-files as b.2, s.2, d.2
run(c=’kpr.3’,h=’kpr.3’,s=’2’) generate adjoint variables ; restart from s.2
sv(’3’) save output-files as b.3, s.3, d.3
run(c=’kpr.4’,h=’kpr.4’,s=’3’) continue the homoclinic orbit; restart from s.3
ap(’3’) append output-files to b.3, s.3, d.3
run(c=’kpr.5’,h=’kpr.5’,s=’3’) continue in reverse direction; restart from s.3
ap(’3’) append output-files to b.3, s.3, d.3
run(c=’kpr.6’,h=’kpr.6’,s=’2’) increase the period; restart from s.2
sv(’6’) save output-files as b.6, s.6, d.6

Table 23.1: Detailed AUTO -Commands for running demo kpr.
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.

AUTO -COMMAND ACTION
run(c=’kpr.7’,h=’kpr.7’,s=’6’) recompute the family of homoclinic orbits; restart from s.6
sv(’7’) save output-files as b.7, s.7, d.7
run(c=’kpr.8’,h=’kpr.8’,s=’7’) continue central saddle-node homoclinics; restart from s.7
sv(’8’) save output-files as b.8, s.8, d.8
run(c=’kpr.9’,h=’kpr.9’,s=’8’) continue homoclinics from codim-2 point; restart from s.8
sv(’9’) save output-files as b.9, s.9, d.9
run(c=’kpr.10’,h=’kpr.10’,s=’3’) 3-parameter curve of inclination-flips; restart from s.3
sv(’10’) save output-files as b.10, s.10, d.10
run(c=’kpr.11’,h=’kpr.11’,s=’3’) another curve of inclination-flips; restart from s.3
sv(’11’) save output-files as b.11, s.11, d.11
run(c=’kpr.12’,h=’kpr.12’,s=’7’) continue non-central saddle-node homoclinics; restart from s.7
sv(’12’) save output-files as b.12, s.12, d.12
run(c=’kpr.13’,h=’kpr.13’,s=’8’) continue non-central saddle-node homoclinics; restart from s.8
ap(’12’) append output-files to b.12, s.12, d.12

Table 23.2: Detailed AUTO -Commands for running demo kpr.
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Chapter 24

HomCont Demo : cir.

24.1 Electronic Circuit of Freire et al.

Consider the following model of a three-variable electronic circuit (Freire, Rodŕıguez-Luis,
Gamero & Ponce 1993)







ẋ = [−(β + ν)x+ βy − a3x
3 + b3(y − x)3] /r,

ẏ = βx− (β + γ)y − z − b3(y − x)3,
ż = y.

(24.1)

These autonomous equations are also considered in the AUTO demo tor.
First, we copy the demo into a new directory and compile

@dm cir

The system is contained in the equation-file cir.f and the initial run-time constants are stored in
c.cir.1 and h.cir.1. We begin by starting from the data from cir.dat for a saddle-focus homoclinic
orbit at ν = −0.721309, β = 0.6, γ = 0, r = 0.6, A3 = 0.328578 and B3 = 0.933578, which was
obtained by shooting over the time interval 2T = PAR(11)= 36.13. We wish to follow the family
in the (β, ν)-plane, but first we perform continuation in (T, ν) to obtain a better approximation
to a homoclinic orbit.

make first

yields the output

BR PT TY LAB PERIOD L2-NORM ... PAR(1)

1 21 UZ 2 1.000000E+02 1.286637E-01 ... -7.213093E-01

1 42 UZ 3 2.000000E+02 9.097899E-02 ... -7.213093E-01

1 50 EP 4 2.400000E+02 8.305208E-02 ... -7.213093E-01

Note that ν = PAR(1) remains constant during the continuation as the parameter values do
not change, only the the length of the interval over which the approximate homoclinic solution
is computed. Note from the eigenvalues, stored in d.1 that this is a homoclinic orbit to a
saddle-focus with a one-dimensional unstable manifold.

205



We now restart at LAB=3, corresponding to a time interval 2T = 200, and change the
principal continuation parameters to be (ν, β). The new constants defining the continuation
are given in c.cir.2 and h.cir.2. We also activate the test functions pertinent to codimension-
two singularities which may be encountered along a family of saddle-focus homoclinic orbits,
viz. ψ2, ψ4, ψ5, ψ9 and ψ10. This must be specified in three ways: by choosing NPSI=5 and
appropriate IPSI(I) in h.cir.2, by adding the corresponding parameter labels to the list of
continuation parameters ICP(I) in c.cir.2 (recall that these parameter indices are 20 more
than the corresponding ψ indices), and finally adding USZR functions defining zeros of these
parameters in c.cir.2. Running

make second

results in

BR PT TY LAB PAR(1) ... PAR(2) ... PAR(25) PAR(29)

1 17 UZ 5 -7.256925E-01 ... 4.535645E-01 ... -1.765251E-05 -2.888436E-01

1 75 UZ 6 -1.014704E+00 ... 9.998966E-03 ... 1.664509E+00 -5.035997E-03

1 78 UZ 7 -1.026445E+00 ... -2.330391E-05 ... 1.710804E+00 1.165176E-05

1 81 UZ 8 -1.038012E+00 ... -1.000144E-02 ... 1.756690E+00 4.964621E-03

1 100 EP 9 -1.164160E+00 ... -1.087732E-01 ... 2.230329E+00 5.042736E-02

with results saved in b.2, s.2, d.2. Upon inspection of the output, note that label 5,
where PAR(25)≈ 0, corresponds to a neutrally-divergent saddle-focus, ψ5 = 0. Label 7, where
PAR(29)≈ 0 corresponds to a local bifurcation, ψ9 = 0, which we note from the eigenvalues
stored in d.2 corresponds to a Shil’nikov-Hopf bifurcation. Note that PAR(2) is also approx-
imately zero at label 7, which accords with the analytical observation that the origin of (24.1)
undergoes a Hopf bifurcation when β = 0. Labels 6 and 8 are the user-defined output points, the
solutions at which are plotted in Fig. 24.1. Note that solutions beyond label 7 (e.g., the plotted
solution at label 8) do not correspond to homoclinic orbits, but to point-to-cycle heteroclinic
orbits (c.f. Section 2.2.1 of Champneys et al. (1996)).

We now continue in the other direction along the family. It turns out that starting from
the initial point in the other direction results in missing a codim 2 point which is close to the
starting point. Instead we start from the first saved point from the previous computation (label
5 in s.2):

make third

The output

BR PT TY LAB PAR(1) ... PAR(2) PAR(22) PAR(24)

1 9 UZ 10 -7.204001E-01 ... 5.912315E-01 -1.725669E+00 -3.295862E-05

1 18 UZ 11 -7.590583E-01 ... 7.428734E-01 3.432139E-05 -2.822988E-01

1 26 UZ 12 -7.746686E-01 ... 7.746147E-01 5.833163E-01 1.637611E-07

1 28 EP 13 -7.746628E-01 ... 7.746453E-01 5.908902E-01 1.426214E-04

contains a neutral saddle-focus (a Belyakov transition) at LAB=10 (ψ4 = 0), a double real
leading eigenvalue (saddle-focus to saddle transition) at LAB =11 (ψ2 = 0) and a neutral saddle
at LAB=12 (ψ4 = 0). Data at several points on the complete family are plotted in Fig. 24.2. If

206



Time

y

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

6

8

Figure 24.1: Solutions of the boundary value problem at labels 6 and 8, either side of the
Shil’nikov-Hopf bifurcation

x

z

y

Figure 24.2: Phase portraits of three homoclinic orbits on the family, showing the saddle-focus
to saddle transition

207



we had continued further (by increasing NMX), the computation would end at a no convergence
error TY=MX owing to the homoclinic family approaching a Bogdanov-Takens singularity at
small amplitude. To compute further towards the BT point we would first need to continue to
a higher value of PAR(11).

24.2 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir cir create an empty work directory
cd cir change directory
demo(’cir’) copy the demo files to the work directory
us(’cir’) use the starting data in cir.dat to create s.dat
run(c=’cir.1’,h=’cir.1’,s=’dat’) increase the truncation interval; restart from s.dat
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’cir.2’,h=’cir.2’,s=’1’) continue saddle-focus homoclinic orbit; restart from s.1
sv(’2’) save output-files as b.2, s.2, d.2
run(c=’cir.3’,h=’cir.3’,s=’2’) generate adjoint variables ; restart from s.2
ap(’2’) append output-files as b.2, s.2, d.2

Table 24.1: Detailed AUTO -Commands for running demo cir.
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Chapter 25

HomCont Demo : she.

25.1 A Heteroclinic Example.

The following system of five equations Rucklidge & Mathews (1995)

ẋ = µx+ x y − z u,
ẏ = −y − x2,
ż = (4σ xu+ 4σ µ z − 9σ z + 4xu+ 4µ z)/4(1 + σ)
u̇ = −σu/4 − σQv/4π2 + 3(1 + σ)xz/4σ
v̇ = ζu/4 − ζv/4

(25.1)

has been used to describe shearing instabilities in fluid convection. The equations possess a
rich structure of local and global bifurcations. Here we shall reproduce a single curve in the
(σ, µ)-plane of codimension-one heteroclinic orbits connecting a non-trivial equilibrium to the
origin for Q = 0 and ζ = 4. The defining problem is contained in equation-file she.f1, and
starting data for the orbit at (σ, µ) = (0.5, 0.163875) are stored in she.dat, with a truncation
interval of PAR(11)=85.07.

We begin by computing towards µ = 0 with the option IEQUIB=-2 which means that both
equilibria are solved for as part of the continuation process.

@dm she

make first

This yields the output

BR PT TY LAB PAR(3) L2-NORM ... PAR(1)

1 5 2 4.528332E-01 3.726787E-01 ... 1.364973E-01

1 10 3 3.943370E-01 3.303798E-01 ... 1.044119E-01

1 15 4 3.358942E-01 2.873213E-01 ... 7.515570E-02

1 20 5 2.772726E-01 2.433403E-01 ... 4.952636E-02

1 25 6 2.181955E-01 1.981358E-01 ... 2.845849E-02

1 30 EP 7 1.581633E-01 1.512340E-01 ... 1.292975E-02

1The last parameter used to store the equilibria ( PAR(21)) is overlaped here with the first test-function. In
this example, it is harmless since the test functions are irrelevant for heteroclinic continuation.
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Alternatively, for this problem there exists an analytic expression for the two equilibria. This is
specified in the subroutine PVLS of she.f. Re-running with IEQUIB=-1

make second

we obtain the output

BR PT TY LAB PAR(3) L2-NORM ... PAR(1)

1 5 2 4.432015E-01 3.657716E-01 ... 1.310559E-01

1 10 3 3.723085E-01 3.142439E-01 ... 9.300982E-02

1 15 4 3.008842E-01 2.611556E-01 ... 5.933966E-02

1 20 5 2.286652E-01 2.062194E-01 ... 3.179939E-02

1 25 6 1.555409E-01 1.491652E-01 ... 1.239897E-02

1 30 EP 7 8.107462E-02 9.143108E-02 ... 2.386616E-03

This output is similar to that above, but note that it is obtained slightly more efficiently because
the extra parameters PAR(12-21) representing the coordinates of the equilibria are no longer
part of the continuation problem. Also note that AUTO has chosen to take slightly larger steps
along the family. Finally, we can continue in the opposite direction along the family from the
original starting point (again with IEQUIB=-1).

make third

BR PT TY LAB PAR(3) L2-NORM ... PAR(1)

1 5 8 4.997590E-01 4.060153E-01 ... 1.637322E-01

1 10 9 5.705299E-01 4.551872E-01 ... 2.065264E-01

1 15 10 6.416439E-01 5.031844E-01 ... 2.507829E-01

1 20 11 7.133301E-01 5.500668E-01 ... 2.959336E-01

1 25 12 7.857688E-01 5.958712E-01 ... 3.415492E-01

1 30 13 8.590970E-01 6.406182E-01 ... 3.872997E-01

1 35 EP 14 9.334159E-01 6.843173E-01 ... 4.329270E-01

The results of both computations are presented in Figure 25.1, from which we see that the orbit
shrinks to zero as PAR(1)=µ→ 0.
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25.2 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir she create an empty work directory
cd she change directory
demo(’she’) copy the demo files to the work directory
us(’she’) use the starting data in she.dat to create s.dat
run(c=’she.1’,h=’she.1’,s=’dat’) continue heteroclinic orbit; restart from s.dat
sv(’1’) save output-files as b.1, s.1, d.1
run(c=’she.2’,h=’she.2’,s=’dat’) repeat with IEQUIB=-1

sv(’2’) save output-files as b.2, s.2, d.2
run(c=’she.3’,h=’she.3’,s=’2’) continue in reverse direction ; restart from s.2
ap(’2’) append output-files to b.2, s.2, d.2

Table 25.1: Detailed AUTO -Commands for running demo she.
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Figure 25.1: Projections into (x, y, z)-space of the family of heteroclinic orbits.
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Chapter 26

HomCont Demo : rev.

26.1 A Reversible System.

The fourth-order differential equation

u′′′′ + Pu′′ + u− u3 = 0

arises in a number of contexts, e.g., as the travelling-wave equation for a nonlinear-Schrödinger
equation with fourth-order dissipation (Buryak & Akhmediev 1995) and as a model of a strut on
a symmetric nonlinear elastic foundation (Hunt, Bolt & Thompson 1989). It may be expressed
as a system















u̇1 = u2

u̇2 = u3

u̇3 = u4

u̇4 = −Pu3 − u1 + u3
1

(26.1)

Note that (26.1) is invariant under two separate reversibilities

R1 : (u1, u2, u3, u4, t) 7→ (u1,−u2, u3,−u4,−t) (26.2)

and
R2 : (u1, u2, u3, u4, t) 7→ (−u1, u2,−u3, u4,−t) (26.3)

First, we copy the demo into a new directory

@dm rev

For this example, we shall make two separate starts from data stored in equation and data files
rev.c.1, rev.dat.1 and rev.c.3, rev.dat.3 respectively. The first of these contains initial data for a
solution that is reversible under R1 and the second for data that is reversible under R2.

26.2 An R1-Reversible Homoclinic Solution.

The first run

make first
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starts by copying the files rev.c.1 and rev.dat.1 to rev.f and rev.dat. The orbit contained
in the data file is a “primary” homoclinic solution for P = 1.6, with truncation (half-)interval
PAR(11) = 39.0448429. which is reversible under R1. Note that this reversibility is specified in
h.rev.1 via NREV=1, (IREV(I), I=1,NDIM) = 0 1 0 1. Note also, from c.rev.1 that we only
have one free parameter PAR(1) because symmetric homoclinic orbits in reversible systems are
generic rather than of codimension one. The first run results in the output

BR PT TY LAB PAR(1) L2-NORM MAX U(1) ...

1 7 UZ 2 1.700002E+00 2.633353E-01 4.179794E-01

1 12 UZ 3 1.800000E+00 2.682659E-01 4.806063E-01

1 15 UZ 4 1.900006E+00 2.493415E-01 4.429364E-01

1 20 EP 5 1.996247E+00 1.111306E-01 1.007111E-01

which is consistent with the theoretical result that the solution tends uniformly to zero as P → 0.
Note, by plotting the data saved in s.1 that only “half” of the homoclinic orbit is computed up
to its point of symmetry. See Figure 26.1.

The second run continues in the other direction of PAR(1), with the test function ψ2 acti-
vated for the detection of saddle to saddle-focus transition points

make second

The output

BR PT TY LAB PAR(1) L2-NORM MAX U(1) ... PAR(22)

1 11 UZ 6 1.000005E+00 2.555446E-01 1.767149E-01 ... -3.000005E+00

1 22 UZ 7 -1.198325E-07 2.625491E-01 4.697314E-02 ... -2.000000E+00

1 33 UZ 8 -1.000000E+00 2.741483E-01 4.316007E-03 ... -1.000000E+00

1 44 UZ 9 -2.000000E+00 2.873838E-01 1.245735E-11 ... 2.318248E-08

1 55 EP 10 -3.099341E+00 3.020172E-01 -2.749454E-11 ... 1.099341E+00

shows a saddle to saddle-focus transition (indicated by a zero of PAR(22)) at PAR(1)=-2. Be-
yond that label the first component of the solution is negative and (up to the point of symmetry)
monotone decreasing. See Figure 26.2.

26.3 An R2-Reversible Homoclinic Solution.

make third

Copies the files rev.c.3 and rev.dat.3 to rev.f and rev.dat, and runs them with the constants
stored in c.rev.3 and h.rev.3. The orbit contained in the data file is a “multi-pulse” homoclinic
solution for P = 1.6, with truncation (half-)interval PAR(11) = 47.4464189. which is re-
versible under R2. This reversibility is specified in h.rev.1 via NREV=1, (IREV(I), I=1,NDIM)

= 1 0 1 0. The output

BR PT TY LAB PAR(1) L2-NORM MAX U(1) ...

1 15 UZ 2 1.700000E+00 3.836401E-01 4.890015E-01

1 16 LP 3 1.711574E+00 3.922135E-01 5.442385E-01
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Figure 26.1: R1-Reversible homoclinic solutions on the half-interval x/T ∈ [0, 1] where
T = 39.0448429 for P approaching 2 (solutions with labels 1-5 respectively have decreasing
amplitude)
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Figure 26.2: R1-reversible homoclinic orbits with oscillatory decay as x → −∞ (corresponding
to label 6) and monotone decay (at label 10)
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1 19 UZ 4 1.600000E+00 4.329404E-01 7.769491E-01

1 31 UZ 5 1.000000E+00 4.808488E-01 1.083298E+00

1 86 UZ 6 -9.664802E-10 5.158463E-01 1.258650E+00

contains the label of a limit point ( ILP was set to 1 in c.rev.3, which corresponds to a
“coalescence” of two reversible homoclinic orbits. The two solutions on either side of this limit
point are displayed in Figure 26.3. The computation ends in a no-convergence point. The
solution here is depicted in Figure 26.4. The lack of convergence is due to the large peak and
trough of the solution rapidly moving to the left as P → −2 (cf. Champneys & Spence (1993)).

Continuing from the initial solution in the other parameter direction

make fourth

we obtain the output

BR PT TY LAB PAR(1) L2-NORM MAX U(1) ...

1 7 UZ 8 1.600000E+00 3.701709E-01 3.836833E-01

1 33 UZ 9 9.999980E-01 3.614405E-01 1.775035E-01

1 93 UZ 10 -7.819855E-06 3.713007E-01 4.698309E-02

which again ends at a no convergence error for similar reasons.
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Figure 26.3: Two R2-reversible homoclinic orbits at P = 1.6 corresponding to labels 1 (smaller
amplitude) and 5 (larger amplitude)
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Figure 26.4: An R2-reversible homoclinic orbit at label 8
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26.4 Detailed AUTO -Commands.

AUTO -COMMAND ACTION
! mkdir rev create an empty work directory
cd rev change directory
demo(’rev’) copy the demo files to the work directory
! cp rev.c.1 rev.c get equations file to rev.c
! cp rev.dat.1 rev.dat get the starting data to rev.dat
us(’rev’) use the starting data in rev.dat to create s.dat
run(c=’rev.1’,h=’rev.1’,s=’dat’) increase PAR(1)

sv(’1’) save output-files as b.1, s.1, d.1
run(c=’rev.2’,h=’rev.2’,s=’1’) continue in reverse direction; restart from s.1
ap(’1’) append output-files to b.1, s.1, d.1
! cp rev.c.3 rev.c get equations file with new value of PAR(11)

! cp rev.dat.3 rev.dat get starting data with different reversibility
us(’rev’) use the starting data in rev.dat to create s.dat
run(c=’rev.3’,h=’rev.3’,s=’dat’) restart with different reversibility
sv(’3’) save output-files as b.3, s.3, d.3
run(c=’rev.4’,h=’rev.4’,s=’3’) continue in reverse direction; restart from s.3
ap(’3’) append output-files to b.3, s.3, d.3

Table 26.1: Detailed AUTO -Commands for running demo rev.
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Chapter 27

HomCont Demo : Homoclinic branch
switching.

This demo illustrates homoclinic branch switching, which is an implementation of Lin’s method
(Lin 1990, Sandstede 1993, Yew 2001) as described in Oldeman et al. (2003). We use a direct
branch switching method to switch from 1- to 2- and 3-homoclinic orbits near an inclination
flip bifurcation in a model due to Sandstede, which was introduced in Chapter 21. This also
shows how to obtain a homoclinic orbit through continuation of a periodic orbit born at a Hopf
bifurcation. Thereafter, we illustrate homoclinic branch switching for the FitzHugh-Nagumo
equations and a 5th-order Korteweg-De Vries model.

The equation files in these demos are written in C.

27.1 Branch switching at an inclination flip in Sand-

stede’s model.

Consider the system (Sandstede 1995a)

ẋ = ax+ by − ax2 − αzx(2 − 3x),
ẏ = bx+ ay − 3

2
x(bx+ ay) + αz2y,

ż = cz + µx+ 3xz + α(x2(1 − x) − y2).
(27.1)

as given in the file sib.c, where for simplicity we have set µ̃ = 0, β = 1 and γ = 3.
We study an inclination flip that exists for a = 0.375, b = 0.625 and c = −0.75. This

corresponds to the situation where the eigenvalues of the equilibrium at the origin are a+ b = 1,
a − b = −0.25 and c = −0.75. Hence, the corresponding bifurcation diagram consists of a
complicated structure involving a fan of infinitely many n-periodic and n-homoclinic orbits for
arbitrary n and a region with horseshoe dynamics; see also Homburg & Krauskopf (2000) and
the references therein.

This computation starts from an equilibrium at (2/3, 0, 0), which exists for a = µ = α =
0. Also, b is set to 0.625 (the value we would like it to be) and c is set to −2.5 in stpnt.
Choosing c = −2 at this stage leads to convergence problems. This equilibrium is not the one
corresponding to the homoclinic orbit, but it is an equilibrium with complex eigenvalues, that
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we can follow until it reaches a Hopf bifurcation. A periodic orbit emanates from this Hopf
bifurcation and can be followed to the homoclinic orbit. However, first we need to change a
from 0 to 0.375.

All the following commands, except for demo(’sib’) are contained within the file ’sib.auto’
which you can either execute in a batch mode by entering
> auto sib.auto

or step by step using
AUTO> demofile(’sib.auto’).

We start by copying the demo to the current work directory and running the first step

demo(’sib’)

ld(’sib’)

rn()

sv(’1’)

The equilibrium is followed in a until a (or PAR(1)) is at our desired value, 0.375.

BR PT TY LAB PAR(1) ... U(1) U(2) U(3)

1 1 EP 1 0.00000E+00 ... 6.66667E-01 0.00000E+00 0.00000E+00

1 5 EP 2 3.75000E-01 ... 6.66667E-01 -1.33333E-01 0.00000E+00

The output is saved in the files b.1, s.1 and d.1. Next we continue in α (PAR(4)) until a Hopf
bifurcation is found:

rn(c=’sib.2’,s=’1’)

sv(’2’)

or, alternatively,

cc("IRS",2)

cc("ICP",[4])

rn(s=’1’)

sv(’2’)

BR PT TY LAB PAR(4) ... U(1) U(2) U(3)

1 6 HB 3 3.18429E-01 ... 6.54375E-01 -1.34754E-01 7.70102E-02

The output is saved in the files b.2, s.2 and d.2. This Hopf bifurcation can then be continued
into a periodic orbit. The periodic orbit eventually reaches a homoclinic bifurcation. We con-
tinue in µ=PAR(5) and PAR(11), which corresponds to the period, and stop when the period is
equal to 35.

rn(c=’sib.3’,s=’2’)

sv(’3’)

BR PT TY LAB PAR(5) L2-NORM ... PERIOD

3 10 5 -2.41881E-03 6.70569E-01 ... 1.08975E+01

...

3 40 8 -1.29495E-02 6.14547E-01 ... 1.41297E+01

...

3 81 EP 13 -1.04657E-04 4.01829E-01 ... 3.50000E+01
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The output is saved in the files b.3, s.3 and d.3. Note that µ first decreases and then increases
towards 0, which is precisely what we expect in this model, as homoclinic orbits occur on the
line µ = 0 in the (α, µ)-plane. It is now instructive to look at a phase space diagram to see what
is going on.

plot(’3’)

Selecting ’solution’ for Type, [5,6,7,8,9,10,11,12,13] for Label, [0] for X and [1] for Y, we obtain
the diagram depicted in Figure 27.1(a), where the periodic orbit grows from the Hopf equilibrium
to a homoclinic orbit.
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Figure 27.1: Periodic orbit growing from a Hopf bifurcation to a homoclinic orbit (a). The
unshifted homoclinic orbit (b).

Note however, that the homoclinic orbit has the wrong left-hand and right-hand end points.
This can be seen by plotting the solution corresponding to Label [13] using ’t’ vs. ’x’ (coordinate
[0]), as depicted in Figure 27.1(b).

Hence, in order to continue this as a real homoclinic we have to give HomCont special
instructions, to do a phase-shift in time. This can be done by setting ISTART=4. Moreover,
since we have not specified the value of the equilibrium at the origin in sib.c, we need to set
IEQUIB=1 to let HomCont detect the equilibrium. Note that in this case this is not strictly
necessary; however, we do this for instructional purposes.

Now we use HomCont to continue the homoclinic orbit in c and µ (PAR(3), PAR(5)), to get
the desired value c = −2.0.

rn(c=’sib.4’,h=’sib.shift’,s=’3’)

sv(’4’)

BR PT TY LAB PAR(3) L2-NORM ... PAR(5)

3 51 EP 14 -2.00000E+00 4.01890E-01 ... 2.66146E-09
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The output is saved in the files b.4, s.4 and d.4. Note that PAR(5)=µ remains zero, which is
exactly what we expect.

Next we want to add a solution to the adjoint equation to this solution. This is achieved by
making the change ITWIST = 1 saved in h.sib.twist. Also, we set ISTART to 1 to tell HomCont
that it is should not try to shift the orbit anymore.

rn(c=’sib.5’,h=’sib.twist’,s=’4’)

sv(’5’)

or, alternatively,

cc("IRS",14)

cc("ICP",[5,8])

cc("NMX",2)

hch("ITWIST",1)

hch("ISTART",1)

rn(s=’4’)

sv(’5’)

where hch means “change HomCont constant”. The output is stored in b.5, s.5 and d.5.

BR PT TY LAB PAR(5) L2-NORM ... PAR(8)

3 2 EP 15 2.66146E-09 4.01890E-01 ... 1.00000E-02

Here PAR(8) is a dummy (unused) parameter and µ just stays where it is. Now that we have
obtained the solution of the adjoint equation, we are able to detect inclination flips. This can
be achieved by setting NPSI to 1, IPSI(1) to 13, and monitoring PAR(33).

rn(c=’sib.6’,h=’sib.if’,s=’5’)

sv(’6’)

BR PT TY LAB PAR(4) L2-NORM ... PAR(5) PAR(33)

3 19 UZ 16 7.11774E-02 4.01890E-01 ... 1.24376E-11 -2.36702E-07

The output is stored in b.6, s.6 and d.6. Hence an inclination flip was found at α = 0.711774.
Now we are ready to perform homoclinic branch switching, using the techniques described

in (Oldeman et al. 2003). Our first aim is to find a 2-homoclinic orbit. The ingredients we need
are: a homoclinic orbit where n-homoclinic orbits are close by, and the solution to the adjoint
equation to obtain the Lin vector. Since both ingredients are there, we can now continue in µ,
ε1 and T1, to obtain the initial Lin gap. Recall from Chapter 20 that the Lin gaps εi correspond
to PAR(20+i*2) and the time intervals Ti correspond to PAR(21+i*2). We stop when ε1 = 0.2.
We need to specify ITWIST=2, to tell HomCont we aim to find a 2-homoclinic orbit, so that it
will split it up in three parts with two potential Lin gaps. We effectively have a 9-dimensional
system at this point.

rn(c=’sib.7’,h=’sib.hbs2’,s=’6’)

sv(’7’)
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BR PT TY LAB PAR(21) L2-NORM ... PAR(22) PAR(5)

3 10 18 3.45897E+01 4.46818E-01 ... 7.87712E-07 -1.55885E-11

3 20 19 2.73699E+01 4.46818E-01 ... 2.91119E-05 -1.63974E-09

3 30 20 1.73720E+01 4.46817E-01 ... 4.42273E-03 -3.10167E-05

3 38 EP 21 1.01451E+01 4.46796E-01 ... 2.00000E-01 -1.48615E-02

The output is stored in b.7, s.7 and d.7. Here we see that T1, the time it takes to make the first
loop with respect to the Poincaré section, decreases. This is illustrated in Figure 27.2. Next we
are ready to close this gap, by continuing in α, µ, and ε1, while keeping T1 at a constant value.
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Figure 27.2: Behaviour of the second piece of the ‘broken homoclinic orbit’ when creating a Lin
gap (a). Projection of the “broken homoclinic orbit” onto the (x, y)-plane, where ε1 = 0.2. To
include all the pieces necessary to obtain this figure, the “X” box must contain [0,3,6] and the
“Y” box must contain [1,4,7] (b).

rn(c=’sib.8’,h=’sib.hbs2’,s=’7’)

ap(’6’)

BR PT TY LAB PAR(4) L2-NORM ... PAR(5) PAR(22)

3 3 UZ 22 7.40000E-02 4.46781E-01 ... -1.43162E-02 1.93746E-01

3 32 EP 23 1.98414E-01 4.46590E-01 ... -6.05495E-03 2.29300E-06

The output is appended to b.6, s.6 and d.6. Now we have obtained a 2-homoclinic orbit at
label 24. However, the homoclinic orbit is still split in three parts. We can switch back to a
normal orbit by setting ITWIST back to 0 and continuing in the usual way. Here we continue
back to the inclination flip point in α and µ.

rn(c=’sib.9’,h=’sib.hom’,s=’6’)

ap(’6’)

223



BR PT TY LAB PAR(4) L2-NORM ... PAR(5)

3 7 UZ 24 1.50000E-01 4.94490E-01 ... -3.60248E-03

3 30 EP 25 7.61403E-02 4.98746E-01 ... -2.64847E-06

So the 2-homoclinic orbit converges back to the 1-homoclinic orbit at the inclination flip bifur-
cation. The output is appended to b.6, s.6 and d.6. The resulting 2-homoclinic orbits can be
seen using

plot(’6’)

and is depicted in Figure 27.3(a).
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Figure 27.3: The 2-homoclinic orbit as a is changed (a). The two different 3-homoclinic orbits
(b).

Next, we aim to find a 3-homoclinic orbit. To do so, we restart at the inclination flip point
at label 16 and set ITWIST=3. Moreover, we need to continue in one more gap, ε2=PAR(24) and,
once again, stop when ε1=PAR(22)=0. Note that the dimension of the boundary value problem
we continue is now equal to 12. This is not to be confused with the setting of NDIM=3 in the
parameter file, because HomCont handles this internally.

rn(c=’sib.10’,h=’sib.hbs3’,s=’6’)

sv(’10’)

BR PT TY LAB PAR(21) ... PAR(22) PAR(24) PAR(5)

3 10 26 3.45896E+01 ... 7.87894E-07 6.42157E-07 -1.06346E-11

3 20 27 2.73699E+01 ... 2.91126E-05 6.51591E-07 -1.63655E-09

3 30 28 1.73719E+01 ... 4.42289E-03 1.44090E-04 -3.10188E-05

3 38 EP 29 1.01451E+01 ... 2.00000E-01 6.97445E-02 -1.48615E-02

The output is stored in b.10, s.10 and d.10. Now we need to subsequently close the Lin gaps.
Our strategy is to keep T1 fixed. We first continue in α, µ, ε1 and ε2 until ε1 = 0.
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rn(c=’sib.11’,h=’sib.hbs3’,s=’10’)

ap(’6’)

BR PT TY LAB PAR(4) ... PAR(5) PAR(22) PAR(24)

3 6 UZ 30 8.20000E-02 ... -1.29790E-02 1.76995E-01 6.37184E-02

3 32 EP 31 1.98414E-01 ... -6.05495E-03 2.30717E-06 3.62449E-02

The output is appended to b.6, s.6 and d.6. Note that this continuation is very similar to
the one where we found a 2-homoclinic orbit. In fact we have now found a 2-homoclinic orbit
(numerically) followed by a ‘broken’ 1-homoclinic orbit; only the mesh is not aligned.

The next step is to close the gap corresponding to ε2 to obtain a 3-homoclinic orbit. We
replace the continuation parameter ε1 by T2, because T2 (PAR(23)) still has to be decreased
from its high value (35) and ε1 needs to stay at 0.

rn(c=’sib.12’,h=’sib.hbs3’,s=’6’)

ap(’6’)

BR PT TY LAB PAR(4) ... PAR(5) PAR(23) PAR(24)

3 16 UZ 32 1.98395E-01 ... -6.05536E-03 2.01311E+01 1.82491E-08

3 24 UZ 33 1.80000E-01 ... -6.50293E-03 1.27554E+01 -3.14294E-02

3 30 UZ 34 1.66990E-01 ... -6.89269E-03 9.41745E+00 -1.03179E-06

3 32 EP 35 1.78172E-01 ... -6.55364E-03 9.50300E+00 -7.20367E-02

The output is appended to b.6, s.6 and d.6. Note that we have found two zeros of PAR(24),
at labels 32 and 34, respectively. The two zeros correspond to two different 3-homoclinic orbits,
which, when followed from periodic orbits, both emanate from from the same saddle-node bi-
furcation. These two 3-homoclinic orbits are depicted in Figure 27.3(b). We can follow both of
these back to the inclination flip point, by setting ITWIST back to 0:

rn(c=’sib.13’,h=’sib.hom’,s=’6’)

ap(’6’)

BR PT TY LAB PAR(4) L2-NORM ... PAR(5)

3 13 UZ 36 1.29999E-01 5.04807E-01 ... -2.33902E-03

3 30 EP 37 9.27258E-02 5.06560E-01 ... -2.76788E-04

rn(c=’sib.14’,h=’sib.hom’,s=’6’)

ap(’6’)

BR PT TY LAB PAR(4) L2-NORM ... PAR(5)

3 7 UZ 38 1.45000E-01 5.47347E-01 ... -4.79400E-03

3 30 EP 39 8.39401E-02 5.52605E-01 ... -7.36741E-05

All the output is appended to b.6, s.6 and d.6. The bifurcation diagram and the paths we
followed when closing the Lin gaps are depicted in Figure 27.4. It is possible and straightforward
to obtain 4, 5, 6, . . . -homoclinic orbits by extending the above strategy.
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Figure 27.4: Parameter space diagram near an inclination flip. The curve through label 17
corresponds to a 1-homoclinic orbit. The opening of the Lin gaps occurs along the vertical
line from label 16 to label 23. The curves through labels 23 and 30 denote the path that is
followed when closing the Lin gaps. The (approximately overlaid) curves though labels 25 and
35 correspond to the 2- and one of the 3-homoclinic orbits. Finally, the curve through label 37
corresponds to the other 3-homoclinic orbit, which was obtained for PAR(22)=T2 = 12.03201.

27.2 Branch switching for a Shil’nikov type homoclinic

orbit in the FitzHugh-Nagumo equations.

The FitzHugh-Nagumo (FHN) equations (FitzHugh 1961, Nagumo, Arimoto & Yoshizawa 1962)
are a simplified version of the Hodgkin-Huxley equations (Hodgkin & Huxley 1952). They model
nerve axon dynamics and are given by

ut = uxx − fa(u) − w,

wt = ǫ(u− γw),
(27.2)

where
fa(u) = u(u− a)(u− 1).

Travelling wave solutions of the form (u,w)(x, t) = (u,w)(ξ), where ξ = x+ ct are solutions
of the following ODE system:

u̇ = v,

v̇ = cv + fa(u) + w,

ẇ =
ǫ

c
(u− γw).

(27.3)

In particular we consider solitary wave solutions of (27.2). These correspond to orbits homoclinic
to (u, v, w) = 0 in system (27.3). In our numerical example we keep γ = 0.
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We aim to find a 2-homoclinic orbit at a Shil’nikov bifurcation. All the commands given
here are in the file fnb.auto. First we obtain a homoclinic orbit using a homotopy technique (see
Friedman, Doedel & Monteiro (1994)), using ISTART=3, for the parameter values c = 0.21, a =
0.2, ǫ = 0.0025.

demo(’sib’)

ld(’fnb’)

rn()

sv(’1’)

Among the output we see:

BR PT TY LAB PERIOD L2-NORM ... PAR(17)

1 20 UZ 3 2.92257E+01 2.37916E-01 ... -1.68000E-09

and a zero of PAR(17) means that a zero of an artificial parameter has been located and the
right-hand end point of the corresponding solution belongs to the plane that is tangent to the
stable manifold at the saddle. This point still needs to come closer to the equilibrium, which
we can achieve by further increasing the period to 300, while keeping PAR(17) at 0:

rn(c=’fnb.2’,h=’fnb.1’,s=’1’)

sv(’2’)

BR PT TY LAB PERIOD L2-NORM ... PAR(2)

1 190 UZ 10 3.00000E+02 7.37932E-02 ... 1.79286E-01

Next we stop using the homotopy technique and increase the period even further, to 1000.

rn(c=’fnb.3’,h=’fnb.3’,s=’2’)

sv(’3’)

BR PT TY LAB PERIOD L2-NORM ... PAR(2)

1 80 UZ 13 1.00000E+03 4.04183E-02 ... 1.79286E-01

A continuation in PAR(2)=a and PAR(1)=c needs to be performed to arrive at the place
where we wish to find a 2-homoclinic orbit: a = 0. At the same time we monitor PAR(22) to
locate Belyakov points.

rn(c=’fnb.4’,h=’fnb.4’,s=’3’)

sv(’4’)

BR PT TY LAB PAR(2) L2-NORM ... PAR(1) PAR(22)

1 6 UZ 15 1.31812E-01 3.28710E-02 ... 2.17166E-01 -6.31243E-06

1 23 UZ 19 -8.54548E-08 1.56158E-02 ... 2.74218E-01 -9.88772E-02

Hence, there exists a Belyakov point at (a, c) = (0.131812, 0.21766). At label 19 we have a
lower value of a than at the Belyakov point, and by inspection of the file d.4 we can observe
that the equilibrium has one positive eigenvalue and a complex conjugate pair of eigenvalues
with negative real part, and conclude that this orbit is of Shil’nikov type. Before starting the
homoclinic branch switching, we calculate the adjoint to obtain a ‘Lin vector’:
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rn(c=’fnb.5’,h=’fnb.5’,s=’4’)

sv(’5’)

BR PT TY LAB PAR(9) L2-NORM ... PAR(3)

1 2 EP 28 -1.00000E+00 1.56158E-02 ... 2.50000E-03

Next, we continue in the time T1 (PAR(21)), the gap ε1 (PAR(22)) and c (PAR(1)), and by
setting ISTART=-2 we try to locate a 2-homoclinic orbit:

rn(c=’fnb.6’,h=’fnb.6’,s=’5’)

sv(’6’)

In fact we find many of them, exactly as is predicted by the theory:

BR PT TY LAB PAR(21) ... PAR(1) PAR(22)

...

1 175 UZ 46 1.64818E+02 ... 2.74218E-01 4.59218E-16

1 180 UZ 47 1.44759E+02 ... 2.74218E-01 -1.43728E-14

1 184 UZ 48 1.24939E+02 ... 2.74218E-01 1.55506E-13

1 189 UZ 49 1.04615E+02 ... 2.74218E-01 -2.37665E-11

1 193 UZ 50 8.53538E+01 ... 2.74218E-01 1.02165E-11

1 198 UZ 51 6.37899E+01 ... 2.74218E-01 -5.74204E-14

Each of these homoclinic orbits differ by about 20 in the value T1. This is about the time it
takes to make one half-turn close to and around the equilibrium, so that orbits differ by the
number of half turns around the equilibrium before a big excursion in phase space. Note that
the variation of c is so small that it does not appear.

A plot of T1 vs. ε1 gives insight into how the gap is opened and closed in the continuation
process. This is depicted in Figure 27.5. We are now in a position to continue each of these
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Figure 27.5: A plot of ε1 as a function of T1 during our computation of Shil’nikov-type two-
homoclinic orbits. Each zero corresponds to a different orbit.

orbits as a normal homoclinic orbit by setting ISTART=1 and ITWIST=0. We leave this as an
exercise to the reader.

228



27.3 Branch switching to a 3-homoclinic orbit in a

5th-order Korteweg-De Vries model

In Champneys & Groves (1997) the following water wave model was considered:

2

15
r′′′′ − br′′ + ar +

3

2
r2 − 1

2
(r′)2 + [rr′]′ = 0. (27.4)

It represents solitary-wave solutions r(x+ at), r → 0 as x→ ±∞ of the 5th-order PDE

rt +
2

15
rxxxx − brxxx + 3rrx + 2rxrxx + rrxxx=0,

where a is the wave speed. The ODE corresponds to a Hamiltonian system with Hamiltonian

H = −1

2
q3
1 −

1

2
aq2

1 + p1q2 −
1

2
bq2

2 +
15

4
p2

2 +
1

2
q2
2q1

and

q1 = r, q2 = r′, p1 = − 2

15
r′′′ + br′ − rr′, p2 =

2

15
r′′.

System (27.4) is also reversible under the transformation

t 7→ −t, (q1, q2, p1, p2) 7→ (q1,−q2,−p1, p2),

but we do not exploit the reversible structure (IREV=0), and instead use it as an example of
Hamiltonian system. This system exhibits an orbit flip for a reversible Hamiltonian system. In
Hamiltonian systems, homoclinic orbits are codimension-zero phenomena, and we have to add
an additional parameter λ that breaks the Hamiltonian structure in this system, by introducing
artificial friction. Thus, the actual system of equations that is used for continuation is

ẋ = (λI + J)∇H(x),

where x = (q1, q2, p1, p2) and J is the usual skew symmetric matrix in R
4. It is now possible to

continue a homoclinic orbit in HomCont in two parameters (λ and either a or b); see also Beyn
(1990).

An explicit solution exists for a = 3/5(2b+ 1)(b− 2), b ≥ −1/2, and it is given by

r(t) = 3(b+
1

2
)sech2

(

[
3

4
(2b+ 1)]1/2t

)

.

It corresponds to a reversible orbit flip for b > 2 (a > 0) We start from this explicit solution,
using ISTART=2, for a = 3 and b = (

√
65 + 3)/4:

demo(’kdv’)

ld(’kdv’)

rn()

sv(’1’)
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BR PT TY LAB PAR(1) L2-NORM ... PAR(3)

1 1 EP 1 3.00000E+00 5.56544E+00 ... 0.00000E+00

1 2 EP 2 3.04959E+00 5.49141E+00 ... 1.77919E-17

Here PAR(1)=a, PAR(2)=b, and PAR(3)=λ. We have only done a very small continuation to
give AUTO a chance to create a good mesh and avoid convergence problems later. Next, we set
ITWIST=1 and calculate the adjoint:

rn(c=’kdv.2’,h=’kdv.2’,s=’1’)

sv(’2’)

BR PT TY LAB PAR(2) L2-NORM ... PAR(9)

1 2 EP 3 2.76556E+00 5.49140E+00 ... -7.62944E-08

We now need to move back to the orbit flip at a = 3:

rn(c=’kdv.3’,h=’kdv.3’,s=’2’)

sv(’3’)

BR PT TY LAB PAR(1) L2-NORM ... PAR(3)

1 14 UZ 5 3.00000E+00 5.47612E+00 ... 1.47274E-09

Now all preparations are done to start homoclinic branch switching. This is very similar to the
technique used in Sandstede’s model in Section 27.1; to find a 3-homoclinic orbit, we open 2 Lin
gaps, until T1 = 3.5, while also varying λ=PAR(3).

rn(c=’kdv.4’,h=’kdv.4’,s=’3’)

sv(’4’)

BR PT TY LAB PAR(3) ... PAR(21) PAR(22) PAR(24)

1 13 8 6.31458E-10 ... 1.65469E+01 -8.57681E-08 -7.30773E-07

1 23 UZ 9 1.46493E-09 ... 9.92489E+00 -5.84373E-12 1.93098E-07

1 26 10 4.01320E-09 ... 6.92406E+00 2.59555E-07 7.47534E-07

1 33 EP 11 2.15487E-06 ... 3.50000E+00 7.92587E-04 3.98390E-04

We then look for an orbit with a < 3 and close the gap corresponding to ε1=PAR(22), for
decreasing a.

rn(c=’kdv.5’,h=’kdv.5’,s=’4’)

sv(’5’)

BR PT TY LAB PAR(2) ... PAR(3) PAR(22) PAR(24)

1 10 12 2.58030E+00 ... 2.15869E-06 7.65037E-04 3.82464E-04

1 13 UZ 13 2.32044E+00 ... 4.02730E-11 1.17522E-10 1.69655E-08

1 20 EP 14 -1.14985E-01 ... -8.87194E-04 -7.18231E-01 -3.31153E-01

and finally close the gap corresponding to ε2=PAR(24),
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rn(c=’kdv.6’,h=’kdv.6’,s=’5’)

sv(’6’)

BR PT TY LAB PAR(2) ... PAR(3) PAR(23) PAR(24)

1 35 15 2.31893E+00 ... -2.16070E-08 7.69046E+00 -1.08126E-05

1 51 UZ 16 2.34039E+00 ... 2.83533E-07 3.47976E+00 1.42651E-04

1 58 UZ 17 3.08085E+00 ... 1.84952E-12 3.50004E+00 -1.64827E-10

1 70 EP 18 3.08870E+00 ... -8.10422E-08 5.87541E+00 -4.82991E-05

so that a three-homoclinic orbit is found. Here the zero at label 16 is the one we are looking
for. At label 17, a=PAR(1) has changed considerably to the extend that a > 3 and a second
3-homoclinic orbit is found. Note that for all zeros of PAR(24)=ε2, the parameter λ=PAR(3)

is also zero (within AUTO accuracy), which it has to be to remain within the original Hamil-
tonian system. Setting ISTART=1, a normal “trivial” continuation (with NMX=1) of the orbit
corresponding to label 16 lets HomCont produce a proper concatenated 3-homoclinic orbit:

rn(c=’kdv.7’,h=’kdv.7’,s=’6’)

sv(’7’)

BR PT TY LAB PAR(2) L2-NORM ... PAR(3)

1 1 EP 19 2.34039E+00 7.51157E+00 ... 2.83533E-07

This 3-homoclinic orbit is depicted in Figure 27.6.
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Figure 27.6: A 3-homoclinic orbit in a 5th-order Hamiltonian Korteweg-De Vries model.
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