
THE PACKAGE NORMALIZ (VERSION 0.2.1)
FOR NORMALIZ 2.2

WINFRIED BRUNS, GESA KÄMPF

The package Normaliz provides an interface for the use of Normaliz 2.2 within Macaulay 2.
The exchange of data is via files, the only possibility offered by Normaliz in its present version.
In addition to the top level functions that aim at objects of type ideal or ring, several other auxiliary
functions allow the user to apply Normaliz to data of type Matrix. Therefore Macaulay 2 can
be used as a comfortable environment for the work with Normaliz.

Note: (a) The order in which the vectors or monomials in the examples are computed, depends
sometimes on random parameters. Therefore your own computations may produce them in a
different order.

(b) In order to save space some of the examples below are typeset in two or three columns.

(c) A significant change in this version of the package is that intermediate files are erased auto-
matically if the user does not set a filename explicitly.

1. PREPARATIONS

The executable(s) for Normaliz should be stored in a directory on your search path. Instead you
can also specify a path where Macaulay 2 should look for them. See Section 8.

2. A SIMPLE EXAMPLE

The typical application of Normaliz in commutative algebra is the computation of the integral
closures of monomial ideals and monomial subalgebras of polynomial ring. In the following
example we consider the ideal I = (x2,y2,z3) in the polynomial ring S = K[x,y,z] and want to
compute the integral closure of the ideal and the integral closure of the Rees algebra R(I) of I in
the ring R = S[t] of which R(I) is naturally a subalgebra.

Macaulay 2, version 1.2
with packages: Elimination, IntegralClosure, LLLBases, PrimaryDecomposition,

ReesAlgebra, SchurRings, TangentCone

i1 : loadPackage "Normaliz"
o1 = Normaliz
o1 : Package
i2 : R=QQ[x,y,z,t];
i3 : I=ideal(x^2,y^2,z^3);
o3 : Ideal of R
i4 : intclMonIdeal(I)

2 2 3 2 2
o4 = {ideal (y , x*y, x , z , y*z , x*z),

2 2 3 2 2
ideal (z, y t, x*y*t, x t, z t, y, x, y*z t, x*z t)}

Date: 16 July 2009.
1

2 WINFRIED BRUNS, GESA KÄMPF

o4 : List

We load the package Normaliz as usual.

We define R and I as indicated above, and compute what we wanted by intclMonIdeal(I).
The output is a list of two monomial ideals, of which the integral closure of I is the first. The
second ideal is to be considered as the list of monomials generating the integral closure of the
Rees algebra. We continue by retrieving the numerical information computed by Normaliz. The
last two last lines tell us that our ideal I is primary to the maximal ideal of S with multiplicity
12. The other lines give information about the cone generated by (the exponent vectors of) the
monomials in the Rees algebra. (Think about their ring theoretic interpretation!)

i6 : showNumInvs(); number support hyperplanes : 5
hilbert basis elements : 9 homogeneous : false
number extreme rays : 6 primary : true
rank : 4 ideal multiplicity : 12
index : 1

The exchange of data between Macaulay 2 and Normaliz is via files. These files are created and
erased automatically. (A significant change in this version.) However, you may want to inspect
them for additional information, and the package contains functions for this purpose. In this case
you must change the treatment of files from “delete” to “keep”. This is done by the explicit
declaration of a filename; see Section 8.

3. INTEGRAL CLOSURES OF MONOMIAL IDEALS AND TORIC RINGS

There are 4 functions, corresponding to the modes 0,1,2,3 of Normaliz. In all cases the pa-
rameter of the function is an ideal. Its elements need not be monomials: the exponent vectors
of the leading monomials form the input of Normaliz. Note: the functions return nothing if one
of the options supp, triang, or hvect has been activated. However, in this case some numerical
invariants are computed, and some other data may be contained in files that you can read into
Macaulay 2 (see Section 9).

• normalToricRing(I)

Computes the normalization of the toric ring generated by the leading monomials of the ele-
ments of I. The function returns an ideal listing the generators of the normalization.
A mathematical remark: the toric ring (and the other rings computed) depends on the list of
monomials given, and not only on the ideal they generate!

i1 : loadPackage "Normaliz"; i5 : normalToricRing(I)
i2 : R=ZZ/37[x,y,t]; 3 2 3 2
i3 : I=ideal(x^3,x^2*y,y^3); o5 = ideal (x , x y, y , x*y)
o3 : Ideal of R o5 : Ideal of R
i4 : setNmzExecPath("d:/Normaliz2.2Windows");

• intclToricRing(I)

Computes the integral closure of the toric ring generated by the leading monomials of the
elements of I in the ring of I. The function returns an ideal listing the generators of the
integral closure.

i6 : intclToricRing(I)
o6 = ideal (x, y)
o6 : Ideal of R

• ehrhartRing(I)

THE PACKAGE NORMALIZ (VERSION 0.2.1) FOR NORMALIZ 2.2 3

The exponent vectors of the leading monomials of the elements of I are considered as genera-
tors of a lattice polytope. The function returns a list of ideals:
(i) If the last ring variable is not used by the monomials, it is treated as the auxiliary variable
of the Ehrhart ring. The function returns a list of two ideals, the first containing the monomials
representing the lattice points of the polytope, the second containing the generators of the
Ehrhart ring.
(ii) If the last ring variable is used by the monomials, the list contains only one ideal, namely
the monomials representing the lattice points of the polytope.

i7 : ehrhartRing(I)
3 2 3 2 3 2 3 2

o7 = {ideal (x , x y, y , x*y), ideal (x t, x y*t, y t, x*y t)}
o7 : List
i8 : J=I+ideal(x*y^2*t^7)
i9 : ehrhartRing(J)

3 2 3 2 7 2 2 2 2 3 2 2 2 2
o9 = {ideal (x , x y, y , x*y t , x y*t, x y*t , x y*t , x*y , x*y t, x*y t ,

--
2 3 2 4 2 5 2 6

x*y t , x*y t , x*y t , x*y t)}
o9 : List

• intclMonIdeal(I)

The exponent vectors of the leading monomials of the elements of I are considered as gen-
erators of a monomial ideal whose Rees algebra is computed. The function returns a list of
ideals:
(i) If the last ring variable is not used by the monomials, it is treated as the auxiliary variable of
the Rees algebra. The function returns a list of two ideals, the first containing the monomials
generating the integral closure of the monomial ideal, the second containing the generators of
the Rees algebra.
(ii) If the last ring variable is used by the monomials, the list contains only one ideal, namely
the monomials generating the integral closure of the ideal.

i10 : intclMonIdeal(I)
3 2 3 2 3 2 3 2

o10 = {ideal (x , x y, y , x*y), ideal (x, y, x t, x y*t, y t, x*y t)}
o10 : List
i11 : intclMonIdeal(J)

3 2 3 2
o11 = {ideal (x , x y, y , x*y)}
o11 : List

4. TORUS INVARIANTS, VALUATION RINGS AND IDEALS

Let T = (K∗)r be the r-dimensional torus acting on the polynomial ring R = K[X1, . . . ,Xn] diago-
nally. Such an action can be described as follows: there are integers ai j, i = 1, . . . ,r, j = 1, . . . ,n,
such that (λ1, . . . ,λr) ∈ T acts by the substitution

X j 7→ λ
a1 j
1 · · ·λ ar j

r X j, j = 1, . . . ,n.

In order to compute the ring of invariants RT one must specify the matrix (ai j).

4 WINFRIED BRUNS, GESA KÄMPF

• torusInvariants(T,R)

The function returns an ideal representing the list of monomials generating RT where in the
function T stands for the matrix (ai j).

i1 : R=QQ[x,y,z,w]; i3 : torusInvariants(T,R)
i2 : T=matrix({{-1,-1,2,0},{1,1,-2,-1}}); 2 2

2 4 o3 = ideal (x z, x*y*z, y z)
o2 : Matrix ZZ <--- ZZ o3 : Ideal of R

It is of course possible that RT = K. At present, Normaliz cannot deal with the zero cone and
will issue the (wrong) error message that the cone is not pointed. The function also gives an error
message if the matrix T has the wrong number of columns.

A discrete monomial valuation v on R (as above) is determined by the values v(X j) of the indeter-
minates. The following function computes the subalgebra S = { f ∈ R : vi(f)≥ 0, i = 1, . . . ,r} for
several such valuations vi, i = 1, . . . ,r. It needs the matrix V = (vi(X j)) and the polynomial ring R
as its input.

• valRing(V,R)

The function returns a monomial ideal, to be considered as the list of monomials generating S.

i1 : R=QQ[x,y,z,w];
i2 : V0=matrix({{0,1,2,3},{-1,1,2,1}});
i3 : valRing(V0,R)

2
o3 = ideal (w, x*w, y, x*y, z, x*z, x z)
o3 : Ideal of R

Again it is possible that S = K, and then the same (wrong) error message as above will be issued.

One can simultaneously determine the S-submodule M = { f ∈ R : vi(f) ≥ wi, i = 1, . . . ,r} for
integers w1, . . . ,wr. (If wi ≥ 0 for all i, M is an ideal of S.) The numbers wi form the (n + 1)th
column of the input matrix:

i4 : V=matrix(0,1,2,3,4,-1,1,2,1,3);
2 5

o4 : Matrix ZZ <--- ZZ
i5 : valRingIdeal(V,R)

2
o5 = {ideal (y, x*y, w, x*w, z, x*z, x z),

2 2 2 2 2 4 4 2 3
ideal (z*w, x*z , z , y w, y z, x*y z, y , x*y , y*w , w)}

o5 : List

We have just seen an example for

• valRingIdeal(V,R)

The function returns two ideals, both to be considered as lists of monomials. The first is the
system of monomial generators of S, the second the system of generators of M.

Note: The functions in this section use the modes 4 and 4 of Normaliz. For large matrices T or
V it could be useful to set the dual option. See Section 6.

5. RETRIEVING NUMERICAL INVARIANTS

The following functions make the numerical invariants computed by Normaliz accessible to
Macaulay 2 (as far as they are computed and available in the output file of Normaliz). Note

THE PACKAGE NORMALIZ (VERSION 0.2.1) FOR NORMALIZ 2.2 5

that some of the numerical invariants are also computed with the volume option. While the output
file of Normaliz interprets the numerical invariants according to the mode, such interpretation is
not taken care of by the functions below.

• getNumInvs()

The function returns a list whose length depends on the invariants available. The order of
the elements in the list is always the same. Each list element has two parts. The first is a
String describing the invariant, the second is the invariant, namely an Integer for rank,
index, multiplicity, a Sequence for the weights, the h-vector and the Hilbert polynomial and a
Boolean for homogeneity and primary (to the maximal ideal).

i1 : setNmzOption("hilb",true);
i2 : intclMonIdeal(I);
i3 : getNumInvs()
o3 = {{hilbert basis elements, 6}, {number extreme rays, 4}, {rank, 3}, {index,

--
1}, {number support hyperplanes, 4}, {homogeneous, true}, {height 1
--
elements, 6}, {homogeneous weights, (1, 1, -2)}, {multiplicity, 4},
--
{h-vector, (1, 3, 0)}, {hilbert polynomial, (2, 6, 4)}, {primary, true},
--
{ideal multiplicity, 9}}

o3 : List

Note: (a) Only the data computed by normaliz are read. There are no ”blank” entries in the
result of getNumInvs().
(b) The invariants are available also if the files are automatically erased.

• showNumInvs()

This function types the numerical invariants on the standard output, but returns nothing. (It
calls getNumInvs().)

i4 : showNumInvs() height 1 elements : 6
hilbert basis elements : 6 homogeneous weights : (1,1,-2)
number extreme rays : 4 multiplicity : 4
rank : 3 h-vector : (1,3,0)
index : 1 hilbert polynomial : (2,6,4)
number support hyperplanes : 4 primary : true
homogeneous : true ideal multiplicity : 9

• exportNumInvs()

This function exports the data read by getNumInvs() into numerical Macaulay 2 data that
can be accessed directly. For each invariant a variable of type Integer, Sequence or Boolean
is created whose name is the first entry of each list element shown above, prefixed by nmz. If
the Print option is set to true, the variables are created and printed to the standard output.
The default value of the Print option is false.

i5 : exportNumInvs() nmzNumberSupportHyperplanes=4
i6 : nmzHilbertBasisElements nmzHomogeneous=true
o6 = 6 nmzHeight1Elements=6
i7 : nmzHomogeneousWeights nmzHomogeneousWeights=(1,1,-2)
o7 = (1, 1, -2) nmzMultiplicity=4
o7 : Sequence nmzHVector=(1,3,0)
i8: exportNumInvs(Print=>true) nmzHilbertPolynomial=(2,6,4)

6 WINFRIED BRUNS, GESA KÄMPF

nmzHilbertBasisElements=6 nmzPrimary=true
nmzNumberExtremeRays=4 nmzIdealMultiplicity=9
nmzRank=3 i9 : nmzHilbertBasisElements
nmzIndex=1 o9 = 6

6. SETTING OPTIONS

The package always uses the options -f and -i for Normaliz (the latter can be deactivated; see
below). The options are set as follows:

• setNmzOption(optname,onoff)

If onoff=true the option is activated, and if onoff=false it is deactivated. The function
returns true if there is an option of name optname and returns false otherwise.

• showNmzOptions()

Prints the activated options on the standard output.

The Normaliz options are accessible via the following names:

-s: supp -a: allf
-v: triang -c: control
-p: hvect -i: ignore
-n: normal -e: errorcheck
-h: hilb -m: savememory
-d: dual

Note: (a) It makes no sense to activate more than one of the options in the left column. The option
normal is hardly ever necessary because Normaliz uses it automatically (provided the setup file
does not say something else—but that is ignored, unless you deactivate ignore).

(b) The option allf makes only sense if a filename has been set explicitly; see Section 8.

i1 : setNmzOption("hilb",true); o2 = false
o1 = true i3 : showNmzOptions();
i2 : setNmzOption("hulb",true) The following options are set:
setNmzOption: Invalid option hulb -f -h -i

7. MONOMIALS TO/FROM Matrix

The transformation of data between an Ideal and a Matrix is carried out by the following func-
tions:

• mons2intmat(I)

Returns the Matrix whose rows represent the leading exponents of the elements of I. The
length of each row is the numbers of variables of the ring of I.

i1 : m=mons2intmat(J)
o1 = | 3 0 0 |

| 2 1 0 |
| 0 3 0 |
| 1 2 7 |

4 3
o1 : Matrix ZZ <--- ZZ

• intmat2mons(m,R)

THE PACKAGE NORMALIZ (VERSION 0.2.1) FOR NORMALIZ 2.2 7

The converse operation. The ring whose elements the monomials shall be has to be specified
by R.

i2 : intmat2mons(m,R)
3 2 3 2 7

o2 = ideal (x , x y, y , x*y t)
o2 : Ideal of R

8. PATHS AND FILES

The most important function in this section is setNmzFilename since the specification of a (non-
empty) filename causes the package to change its treatment of intermediate files. The functions
readNmzData and writeNmzData discussed in Section 9 require such an explicit filename.

If Normaliz is not in the search path for executables, then its path must be made known to
Macaulay 2. Furthermore one can set the path to the directory where Normaliz and Macaulay
2 exchange data, choose the executable (if normbig is needed), and remove the files created.

The path names need to be defined only once since they can be written to the hard disk and
retrieved from there in subsequent sessions.

• setNmzFilename(s)

The function sets the filename for the exchange of data. As said above, it is mandatory to set a
non-empty filename if you want to keep the files created for and by Normaliz. Unless a path
is set by setNmzDataPath, files will be created in the current directory.

i5 : setNmzFilename("VeryInteresting");
i6 : getNmzFilename() -- the file name
o6 = VeryInteresting

Note: Resetting the filename by setNmzFilename("") forces the package to return to dele-
tion of temporary files, but the files created while the filename had been set will not be erased.

• rmNmzFiles()

This function removes the files created for and by Normaliz, using the last filename created.
It needs an explicit filename.

• setNmzExecPath(s)

The function sets the path to the executable for Normaliz. This is absolutely necessary if it is
not in the search path. To retrieve the value stored in the global variable call getNmzExecPath().

i2 : setNmzExecPath("d:/Normaliz2.2Windows"); -- Windows
i3 : getNmzExecPath() -- returns the global variable holding the path name
o3 = d:/normaliz/bin/ -- the last / is added (if necessary)
i2 : setNmzExecPath(~/Normaliz2.2Linux"); -- Unix

The path given in the example under Windows is the necessary path if the Normaliz package
has been unzipped in the root directory of drive d:.

• setNmzVersion(s)

The function chooses the version of the executable for Normaliz. The default is norm64, and
nothing needs to be done if it is sufficient. To retrieve the value stored in the global variable
call getNmzVersion().

i4 : setNmzVersion("normbig"); -- choose normbig
i5 : getNmzVersion() -- returns the variable holding the version name
o5 = normbig

8 WINFRIED BRUNS, GESA KÄMPF

i6 : setNmzVersion("norm32"); -- now it is norm32

• setNmzDataPath(s)

The function sets the directory for the exchange of data. By default it is the current directory
(or the home directory of Macaulay 2). If this choice is o.k., nothing needs to be done. To
retrieve the value stored in the global variable call getNmzDataPath().

i7 : setNmzDataPath("d:/Normaliz2.2Windows/example"); -- Windows
i8 : getNmzDataPath() -- returns the variable holding the path name
o8 = d:/Normaliz2.2Windows/example
i7 : setNmzDataPath("../MyFiles/normaliz"); -- Unix

Note: Macaulay 2 cannot use filenames starting with $HOME in its input/output functions.
You must also avoid path names starting with / if you work under Cygwin, since Macaulay 2
and Normaliz interpret them in a different way.

• writeNmzPaths()

The function writes the path names into two files in the current directory. If one of the names
has not been defined, the corresponding file is written, but contains nothing.

i9 : writeNmzPaths(); i11 : get("nmzM2Data.path")
i10 : get("nmzM2Exec.path") o11 = d:/Normaliz2.2Windows/example
o10 = d:/Normaliz2.2Windows

• startNmz()

This function reads the files written by writeNmzPaths(), retrieves the path names, and types
them on the standard output (as far as they have been set). Thus, once the path names have
been stored, a Normaliz session can simply be opened by this function.

i1 : startNmz(); i3 : writeNmzPaths();
nmzExecPath is d:/Normaliz2.2Windows i4 : startNmz();
nmzDataPath is d:/Normaliz2.2Windows/example nmzExecPath is d:/Normaliz2.1Windows
i2 : setNmzDataPath(""); nmzDataPath not set

9. RUNNING Normaliz ON DATA OF TYPE Matrix

There are functions to write and read files created for and by Normaliz. Note that all functions in
Sections 3 and 4 as well as the function normaliz below write and read their data automatically
to and from the hard disk so that writeNmzData will hardly ever be used explicitly.

Note: In order to access files created by Normaliz you must have specified a filename. Also
writeNmzData needs an explicit filename.

• writeNmzData(sgr,nmzMode)

Creates an input file for Normaliz. The rows of sgr are considered as the generators of the
semigroup. The parameter nmzMode sets the mode.

i1 : sgr=matrix(1,2,3,4,5,6,7,8,10);
i2 : writeNmzData(sgr,1);
i3 : get(setNmzFile()|".in")
o3 = 3

3
1 2 3
4 5 6
7 8 10
1

THE PACKAGE NORMALIZ (VERSION 0.2.1) FOR NORMALIZ 2.2 9

• normaliz(sgr, nmzMode)

The function applies Normaliz to the parameter sgr in the mode set by nmzMode. The function
returns the Matrix defined by the file with suffix gen.

i4 : normaliz(sgr,0)
o4 = | 7 8 10 |

| 1 2 3 |
| 2 3 4 |
| 3 4 5 |
| 4 5 6 |

5 3
o4 : Matrix ZZ <--- ZZ

• readNmzData(suffix)

Reads an output file of Normaliz containing an integer matrix and returns it as a Matrix. For
example, this function is useful if one wants to inspect the support hyperplanes. The filename
is created from the current filename in use and the suffix given to the function.

i5 : readNmzData("sup")
o5 = | -2 -2 3 |

| -4 11 -6 |
| 1 -2 1 |

3 3
o5 : Matrix ZZ <--- ZZ

