
THE LIBRARY NORMALIZ.LIB (VERSION 2.2)
FOR NORMALIZ 2.2

WINFRIED BRUNS

CONTENTS

1. Preparations 1

2. A simple example 1

3. Integral closures of monomial ideals and toric rings 2

4. Torus invariants, valuation rings and ideals 4

5. Retrieving numerical invariants 5

6. Setting options 6

7. Monomials to/from intmat 6

8. Paths and files 7

9. Running Normaliz on data of type intmat 8

The library normaliz.lib provides an interface for the use of Normaliz 2.2 within Singular.
The exchange of data is via files, the only possibility offered by Normaliz in its present version.
In addition to the top level functions that aim at objects of type ideal or ring, several other auxiliary
functions allow the user to apply Normaliz to data of type intmat. Therefore Singular can be
used as a comfortable environment for the work with Normaliz.

Note: (a) The order in which the vectors or monomials in the examples are computed, depends
sometimes on random parameters. Therefore your own computations may produce them in a
different order.

(b) In order to save space some of the examples below are typeset in two or three columns.

(c) In version 2.2 of the library there are some changes to meet the guidelines for Singular li-
braries. This includes the renaming of procedures: the underscores are removed and the following
letter set to uppercase. Furthermore the old procedures for setting options are no longer available,
see Section 6.

(d) Version 2.2 of normaliz.lib uses sed to transfer the normaliz output into a Singular
conform format. So please make sure sed is in the search path of your system.

(e) A significant change in version 2.1.1 of the library is that intermediate files are erased auto-
matically if the user does not set a filename explicitly.

1. PREPARATIONS

There are only two steps of which the second is optional:

Date: 16 July 2009.
1

2 WINFRIED BRUNS

(1) The library must be stored in a directory where Singular looks for libraries.
(2) The executable(s) for Normaliz should be stored in a directory on your search path.

Instead of storing the executable(s) on your search path you can also specify a path where Singular
should look for them. See Section 8.

2. A SIMPLE EXAMPLE

The typical application of Normaliz in commutative algebra is the computation of the integral
closures of monomial ideals and monomial subalgebras of polynomial ring. In the following
example we consider the ideal I = (x2,y2,z3) in the polynomial ring S = K[x,y,z] and want to
compute the integral closure of the ideal and the integral closure of the Rees algebra R(I) of I in
the ring R = S[t] of which R(I) is naturally a subalgebra. (The output of Singular is partially
typeset in 3 columns.)

SINGULAR /
A Computer Algebra System for Polynomial Computations / version 3-0-4

0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ Nov 2007

FB Mathematik der Universitaet, D-67653 Kaiserslautern \
> LIB "normaliz.lib";
// ** loaded normaliz.lib 2.2, 2009/07/14
> ring R=0,(x,y,z,t),dp;
> ideal I=x^2,y^2,z^3;
> intclMonIdeal(I);
[1]: [2]:

_[1]=y2 _[1]=z _[7]=x
_[2]=xy _[2]=y2t _[8]=yz2t
_[3]=x2 _[3]=xyt _[9]=xz2t
_[4]=z3 _[4]=x2t
_[5]=yz2 _[5]=z3t
_[6]=xz2 _[6]=y

The library is loaded by Normaliz.lib as usual.

We define R and I as indicated above, and compute what we wanted by intclMonIdeal(I).
The output is a list of two monomial ideals, of which the integral closure of I is the first. The
second ideal is to be considered as the list of monomials generating the integral closure of the
Rees algebra. we continue by retrieving the numerical information computed by Normaliz. The
last two last lines tell us that our ideal I is primary to the maximal ideal of S with multiplicity
12. The other lines give information about the cone generated by (the exponent vectors of) the
monomials in the Rees algebra. (Think about their ring theoretic interpretation!)

> showNuminvs();
hilbert_basis_elements : 9
number_extreme_rays : 6
rank : 4
index : 1
number_support_hyperplanes : 5
homogeneous : 0
primary : 1
ideal_multiplicity : 12

THE LIBRARY NORMALIZ.LIB FOR NORMALIZ 2.2 3

The exchange of data between Singular and Normaliz is via files. These files are created and
erased automatically. (A significant change in version 2.1.1.) However, you may want to inspect
them for additional information, and the library contains functions for this purpose. In this case
you must change the treatment of files from “delete” to “keep”. This is done by the explicit
declaration of a filename; see Section 8.

3. INTEGRAL CLOSURES OF MONOMIAL IDEALS AND TORIC RINGS

There are 4 functions for the computation of integral closures, corresponding to the modes 0,1,2,3
of Normaliz. In all cases the parameter of the function is an ideal. Its elements need not be
monomials: the exponent vectors of the leading monomials form the input of Normaliz. Note:
the functions return nothing if one of the options supp, triang, or hvect has been activated.
However, in this case some numerical invariants are computed, and some other data may be con-
tained in files that you can read into Singular (see Section 9).

• normalToricRing(ideal I)

Computes the normalization of the toric ring generated by the leading monomials of the ele-
ments of I. The function returns an ideal listing the generators of the normalization.
A mathematical remark: the toric ring (and the other rings computed) depends on the list of
monomials given, and not only on the ideal they generate!

> ring R=37,(x,y,t),dp;
> ideal I=x3,x2y,y3;
> normalToricRing(I);
x3 x2y y3 xy2

• intclToricRing(ideal I)

Computes the integral closure of the toric ring generated by the leading monomials of the
elements of I in the basering. The function returns an ideal listing the generators of the
integral closure.

> intclToricRing(I);
x y

• ehrhartRing(ideal I)

The exponent vectors of the leading monomials of the elements of I are considered as gener-
ators of a lattice polytope. The function returns a list of ideals:
(i) If the last ring variable is not used by the monomials, it is treated as the auxiliary variable
of the Ehrhart ring. The function returns two ideals, the first containing the monomials repre-
senting the lattice points of the polytope, the second containing the generators of the Ehrhart
ring.
(ii) If the last ring variable is used by the monomials, the list returned contains only one ideal,
namely the monomials representing the lattice points of the polytope.

> ehrhartRing(I); > ideal J=I,xy2t7;
[1]: > ehrhartRing(J);

_[1]=x3 [1]:
_[2]=x2y _[1]=x3 _[9]=xy2t5
_[3]=y3 _[2]=x2y _[10]=xy2t4
_[4]=xy2 _[3]=y3 _[11]=xy2t3

[2]: _[4]=xy2t7 _[12]=xy2t2
_[1]=x3t _[5]=x2yt _[13]=xy2t
_[2]=x2yt _[6]=x2yt2 _[14]=xy2

4 WINFRIED BRUNS

_[3]=y3t _[7]=x2yt3
_[4]=xy2t _[8]=xy2t6

• intclMonIdeal(ideal I)

The exponent vectors of the leading monomials of the elements of I are considered as gen-
erators of a monomial ideal whose Rees algebra is computed. The function returns a list of
ideals:
(i) If the last ring variable is not used by the monomials, it is treated as the auxiliary variable of
the Rees algebra. The function returns two ideals, the first containing the monomials generating
the integral closure of the monomial ideal, the second containing the generators of the Rees
algebra.
(ii) If the last ring variable is used by the monomials, the list returned contains only one ideal,
namely the monomials generating the integral closure of the ideal.

> intclMonIdeal(I); > intclMonIdeal(J);
[1]: [2]: [1]:

_[1]=x3 _[1]=x _[1]=x3
_[2]=x2y _[2]=y _[2]=x2y
_[3]=y3 _[3]=x3t _[3]=y3
_[4]=xy2 _[4]=x2yt _[4]=xy2

_[5]=y3t
_[6]=xy2t

4. TORUS INVARIANTS, VALUATION RINGS AND IDEALS

Let T = (K∗)r be the r-dimensional torus acting on the polynomial ring R = K[X1, . . . ,Xn] diago-
nally. Such an action can be described as follows: there are integers ai j, i = 1, . . . ,r, j = 1, . . . ,n,
such that (λ1, . . . ,λr) ∈ T acts by the substitution

X j 7→ λ
a1 j
1 · · ·λ ar j

r X j, j = 1, . . . ,n.

In order to compute the ring of invariants RT one must specify the matrix (ai j).

• torusInvariants(intmat T)

The function returns an ideal representing the list of monomials generating RT where in the
function T stands for the matrix (ai j).

> ring R=0,(x,y,z,w),dp;
> intmat T[2][4]=-1,-1,2,0, 1,1,-2,-1;
> torusInvariants(T);
x2z xyz y2z

It is of course possible that RT = K. At present, Normaliz cannot deal with the zero cone and
will issue the (wrong) error message that the cone is not pointed. The function also gives an error
message if the matrix T has the wrong number of columns.

A discrete monomial valuation v on R (as above) is determined by the values v(X j) of the indeter-
minates. The following function computes the subalgebra S = { f ∈ R : vi(f)≥ 0, i = 1, . . . ,r} for
several such valuations vi, i = 1, . . . ,r. It needs the matrix V = (vi(X j)) as its input.

• valRing(intmat V)

The function returns a monomial ideal, to be considered as the list of monomials generating S.

THE LIBRARY NORMALIZ.LIB FOR NORMALIZ 2.2 5

> ring R=0,(x,y,z,w),dp;
> intmat V0[2][4]=0,1,2,3, -1,1,2,1;
> valRing(V0);
w xw y xy z xz x2z

Again it is possible that S = K, and then the same (wrong) error message as above will be issued.

One can simultaneously determine the S-submodule M = { f ∈ R : vi(f) ≥ wi, i = 1, . . . ,r} for
integers w1, . . . ,wr. (If wi ≥ 0 for all i, M is an ideal of S.) The numbers wi form the (n + 1)th
column of the input matrix:

> intmat V[2][5]=0,1,2,3,4, -1,1,2,1,3;
> valRingIdeal(V);
[1]: [2]:

_[1]=y _[1]=zw _[7]=y4
_[2]=xy _[2]=xz2 _[8]=xy4
_[3]=w _[3]=z2 _[9]=yw2
_[4]=xw _[4]=y2w _[10]=w3
_[5]=z _[5]=y2z
_[6]=xz _[6]=xy2z
_[7]=x2z

We have just seen an example for

• valRingIdeal(intmat V)

The function returns two ideals, both to be considered as lists of monomials. The first is the
system of monomial generators of S, the second the system of generators of M.

Note: The functions in this section use the modes 4 and 5 of Normaliz. For large matrices T or
V it could be useful to set the dual option. See Section 6.

5. RETRIEVING NUMERICAL INVARIANTS

The following functions make the numerical invariants computed by Normaliz accessible to
Singular. Some of the these invariants are always computed,regardless of the option(s) set.

• showNuminvs()

This function types the numerical invariants on the standard output, but returns nothing.

> showNuminvs();
hilbert_basis_elements : 73
number_extreme_rays : 24
rank : 16
index : 1
number_support_hyperplanes : 457
homogeneous : 1
height_1_elements : 24
homogeneous_weights : 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
multiplicity : 2531
h_vector : 1,8,32,88,207,412,660,670,365,84,4,0,0,0,0,0

• exportNuminvs()

This function exports the data read by getNuminvs() into numerical Singular data that can
be accessed directly. For each invariant a variable of type int or intvec is created whose
name is the first entry of each list element shown above, prefixed by nmz_.

6 WINFRIED BRUNS

> exportNuminvs();
> nmz_h_vector;
1,8,32,88,207,412,660,670,365,84,4,0,0,0,0,0
> nmz_index;
1

Note: (a) The inv file also contains the coefficients of the Hilbert (or Ehrhart) polynomial. Even
for medium sized examples they may be too large for the type int. Therefore these coefficients
are not imported.

(b) Only the data computed by normaliz are read. There are no ”blank” entries in the result of
getNuminvs().

(c) The numerical invariants are stored in a variable of the library. You can inspect the variable by
typing Normaliz::NumInvs.

6. SETTING OPTIONS

The library always uses the options -f and -i for Normaliz (the latter can be deactivated; see
below). The options are set as follows:

• setNmzOption(string optname, int onoff)

If onoff=1 the option is activated, and if onoff=0 it is deactivated.

• showNmzOptions()

Returns the string of activated options.

The Normaliz options are accessible via the following names:

-s: supp -a: allf
-v: triang -c: control
-p: hvect -i: ignore
-n: normal -e: errorcheck
-h: hilb -m: savememory
-d: dual

Note: (a) It makes no sense to activate more than one of the options in the left column. The option
normal is hardly ever necessary because Normaliz uses it automatically (provided the setup file
does not say something else—but that is ignored, unless you deactivate ignore).

(b) The option allf makes only sense if a filename has been set explicitly; see Section 8.

> setNmzOption("hilb",1);
> setNmzOption("hulb",1);
Invalid option hulb
> showNmzOptions();
-f -h -i

The old functions

• set_hilb_option(int onoff)

• set_vol_option(int onoff)

• set_c_option(int onoff)

• set_allf_option(int onoff)

THE LIBRARY NORMALIZ.LIB FOR NORMALIZ 2.2 7

are no longer available. Please use setNmzOption(). The old option vol is now represented by
triang and c by control.

7. MONOMIALS TO/FROM intmat

The transformation of data between an ideal and an intmat is carried out by the following
functions:

• mons2intmat(ideal I)

Returns the intmat whose rows represent the leading exponents of the elements of I. The
length of each row is nvars(basering).

> intmat m=mons2intmat(J);
> m;
3,0,0, 2,1,0, 0,3,0, 1,2,7

• intmat2mons(intmat m)

The converse operation.

> intmat2mons(m);
x3 x2y y3 xy2t7

8. PATHS AND FILES

The most important function in this section is setNmzFilename since the specification of a (non-
empty) filename causes the library to change its treatment of intermediate files. The functions
readNmzData and writeNmzData discussed in Section 9 require such an explicit filename.

If Normaliz is not in the search path for executables, then its path must be made known to
Singular. Furthermore one can set the path to the directory where Normaliz and Singular
exchange data, choose the executable (if normbig is needed), and remove the files created.

The path names need to be defined only once since they can be written to the hard disk and
retrieved from there in subsequent sessions.

• setNmzFilename(string s)

The function sets the filename for the exchange of data. As said above, it is mandatory to set a
nonempty filename if you want to keep the files created for and by Normaliz. Unless a path is
set by setNmzDataPath, files will be created in the current directory.

> setNmzFilename("VeryInteresting");
> Normaliz::nmz_filename; // the variable holding the file name
VeryInteresting

Note: Resetting the filename by setNmzFilename("") forces the library to return to deletion
of temporary files, but the files created while the filename had been set will not be erased.

• rmNmzFiles()

This function removes the files created for and by Normaliz, using the last filename specified.
It needs an explicit filename.

• setNmzExecPath(string s)

The function sets the path to the executable for Normaliz. This is absolutely necessary if it is
not in the search path.

8 WINFRIED BRUNS

> setNmzExecPath("d:/Normaliz2.1Windows"); // Windows
> Normaliz::nmz_exec_path; // the variable holding the path name
d:/Normaliz2.1Windows/ // the last / is added (if necessary)
> setNmzExecPath("$HOME/Normaliz2.1Linux"); // Linux

Please consult the installation instructions of Singular for the conventions regarding path
names under Windows.

• setNmzVersion(string s)

The function chooses the version of the executable for Normaliz. The default is norm64, and
nothing needs to be done if it is sufficient.

> setNmzVersion("normbig"); // choose normbig
> Normaliz::nmz_version; // the variable holding the version name
normbig
> setNmzVersion("norm32"); // now it is norm32

• setNmzDataPath(string s)

The function sets the directory for the exchange of data. It will only be used if a non-empty
filename has been specified.

> setNmzDataPath("d:/Normaliz2.1Windows/example"); // Windows
> Normaliz::nmz_data_path; // the variable holding the path name
d:/Normaliz2.1Windows/example/
setNmzDataPath("../MyFiles/normaliz"); // Linux

Note: It seems that Singular cannot use filenames starting with ~ or $HOME in its input/output
functions.
You must also avoid path names starting with / if you work under Cygwin, since Singular
and Normaliz interpret them in different ways.

• writeNmzPaths()

The function writes the path names into two files in the current directory. If one of the names
has not been defined, the corresponding file is created, but contains nothing.

> writeNmzPaths();
> int dummy=system("sh","cat nmz_sing_exec.path");
d:/Normaliz2.1Windows/
> dummy=system("sh","cat nmz_sing_data.path");
d:/Normaliz2.1Windows/example/

• startNmz()

This function reads the files written by writeNmzPaths(), retrieves the path names, and types
them on the standard output (as far as they have been set). Thus, once the path names have
been stored, a Normaliz session can simply be opened by this function.

> startNmz();
nmz_exec_path is d:/Normaliz2.1Windows/
nmz_data_path is d:/Normaliz2.1Windows/example/
> setNmzDataPath("");
> writeNmzPaths();
> startNmz();
nmz_exec_path is d:/Normaliz2.1Windows/
nmz_data_path not set

THE LIBRARY NORMALIZ.LIB FOR NORMALIZ 2.2 9

9. RUNNING Normaliz ON DATA OF TYPE intmat

There are functions to write and read files created for and by Normaliz. Note that all functions in
Sections 3 and 4 as well as the function normaliz below write and read their data automatically
to and from the hard disk so that writeNmzData will hardly ever be used explicitly.

Note: In order to access files created by Normaliz you must have specified a filename. Also
writeNmzData needs an explicit filename.

• writeNmzData(intmat sgr, int nmz_mode)

Creates an input file for Normaliz. The rows of sgr are considered as the generators of the
semigroup. The parameter nmz_mode sets the mode.

> setNmzFilename("VeryInteresting");
> intmat sgr[3][3]=1,2,3,4,5,6,7,8,10;
> writeNmzData(sgr,1);
> int dummy=system("sh","cat VeryInteresting.in");
3
3
1 2 3
4 5 6
7 8 10
0

• normaliz(intmat sgr, int nmz_mode)

The function applies Normaliz to the parameter sgr in the mode set by nmz_mode. The
function returns the intmat defined by the file with suffix gen.

> normaliz(sgr,0);
> print(normaliz(sgr,0));

7 8 10
1 2 3
2 3 4
3 4 5
4 5 6

• readNmzData(string suffix)

Reads an output file of Normaliz containing an integer matrix and returns it as an intmat. For
example, this function is useful if one wants to inspect the support hyperplanes. The filename
is created from the current filename and the suffix given to the function.

> setNmzFilename("VeryInteresting");
> intmat sgr[3][3]=1,2,3, 4,5,6, 7,8,10;
> intmat sgrnormal=normaliz(sgr,0);
> readNmzData("sup");
1,-2,1,
-4,11,-6,
-2,-2,3
> readNmzData("typ");
0,0,1,
3,0,0,
2,1,0,
1,2,0,
0,3,0

