nzmath.poly

termorder

Term order for polynomials.

classes

constants

ascending_order

The order for univariate polynomial.

lexicographic_order

An order for multivariate polynomial. The lexicograpic order is defined for two terms (i_0,...,i_n) < (j_0,...,j_n):

there exists a number k (0 ≤ k ≤ n) s.t.

i_0 = j_0 ,..., i_{k-1} = j_{k-1} and i_k < j_k

total_degree_lexicographic_order

An order for multivariate polynomial. Total degree lexicographic (or graded lexicographic) term order:

  1. i_0 +...+ i_n < j_0 +...+ j_n or
  2. i_0 +...+ i_n = j_0 +...+ j_n and
    there exists k s.t.

    i_0 = j_0 ,..., i_{k-1} = j_{k-1} and i_k < j_k

total_degree_reverse_lexicographic_order

An order for multivariate polynomial. Total degree reverse lexicographic (or graded reverse lexicographic) term order:

  1. i_0 +...+ i_n < j_0 +...+ j_n or
  2. i_0 +...+ i_n = j_0 +...+ j_n and
    there exists k s.t.

    i_0 = j_0 ,..., i_{k-1} = j_{k-1} and i_k > j_k