class POLYS_INTI <$IS_LT{POLYS_INTI},$STR
Flattened version is
here
Ancestors
$STR
$IS_LT{_}
$IS_EQ
Public
Features
S_poly_PID(g:SAME):SAME
S_poly_PID_L2(g:SAME):SAME
****
S in Z<x>. Erase lowest term.
S_poly_PID_L3(g:SAME):SAME
****
S in Z<x>
compare(other:SAME):INT
constructionHensel(g,h:SAME, n,prime,pn:INTI, out g1,out h1:SAME)
****
Hensel's construction.
Input: self,g,h,n,prime,pn s.t. self==g*h (mod pn), pn=prime^n
Output: g,h s.t. f=g*h (mod prime^(n+1))
countSolution(a,b: INTI, countRedundancy:BOOL):CARD
countSolution(a,b:INTI, infty_n,infty:BOOL , countRedundancy:BOOL):CARD
create(c:CARD): SAME
****
c*x^0
create(c:INT): SAME
****
c*x^0
create(c:INT,d:CARD): SAME
****
c*x^(d)
divmod_Zp(p:INTI, divisor:SAME, out q:SAME, out r:SAME)
****
as Zp coefficient polynomial.
extended_gcd_Zp(prime:INTI,o:SAME, out f1:SAME, out f2:SAME):SAME
factorize:ARRAY{SAME}
gcd_Zp(prime:INTI, o:SAME):SAME
****
Euclidean algorithm.
gcd_coeff:INTI
****
gcd of coefficients
init
is_SqrFree(prime:INTI):BOOL
is_SqrFree:BOOL
lcm_coeff:INTI
****
lcm of of coefficients
mod(n:INTI):SAME
****
mod each coefficient.
mod_lt(other:ARRAY{SAME}):SAME
****
mod for leading term
mod_n(n:INTI):SAME
****
mod( -n/2< coeff <= n/2 ) for each coeff.
polys_fp:POLYS_FP
polys_rat:POLYS_RAT
remove_gcd
****
self/gcd_coeff
remove_gcd:SAME
****
self/gcd_coeff
squareFreeDecomposition:ARRAY{SAME}
The Sather Home Page