immutable class FIELD < $CARDINAL{FIELD}, $OPTION, $EXACT_FMT |
---|
**** |
__This_immutable_class_is_one_of_the_most_fundamental_exact_number_classes. __It_has_the_value_domain_from_0_to_some_maximum_value_determined __by_the_machine_representation_provided.___All_arithmetic_on_values_of_this __class_is_modular_in_the_field_zero_to_2^asize.__This_class_inherits_from __AVAL{BIT}._The_number_of_bits_in_the_representation_is_identical_to __NUM_BITS::Num_Bits. ___NOTE_The_Sather_language_requires_that_Num_Bits_be_at_least_32_to_ensure ________portability_of_INT_literals_up_to_this_size. ________No_operation_results_in_an_out_of_range_value_so_no_checking ___is_required. ___References_: ________Keith_O._Geddes,_Stephen_R._Czapor,_and_George_Labahn,_"Algorithms ________for_Computer_Algebra",_Kluwer_Academic_Publishers,_Boston,_1992. |
abs : SAME |
---|
card : CARD |
---|
**** | This routine returns a copy of self. Built-in to this implementation. |
create(val : CARD) : SAME |
---|
create(val : FIELD) : SAME |
---|
create(val : QUADBITS) : SAME |
---|
**** | This returns a field value from the given bit-pattern. |
div(other : SAME) : SAME |
---|
field : SAME |
---|
**** | This routine returns a copy of self. Built-in to this implementation. |
int : INT |
---|
is_field(str : STR) : BOOL |
---|
**** |
__This_predicate_returns_true_if_and_only_if_str_represents_a_field_number. |
is_lt(other : SAME) : BOOL |
---|
**** | This predicate returns true if and only if self is less than other
___using_the_closed_field_arithmetic_relation_(ie_the_value_with_all_bits_set ___is_less_than_the_next_value_which_has_all_bits_clear!). |
is_prime : BOOL |
---|
**** | This predicate returns true if and only if self is a prime number. |
log2 : SAME |
---|
minus(other : SAME) : SAME |
---|
mod(other : SAME) : SAME |
---|
next_exp2 : SAME |
---|
plus(other : SAME) : SAME |
---|
times(other : SAME) : SAME |
---|