immutable class FIELD < $CARDINAL{FIELD}, $OPTION, $EXACT_FMT
****

__This_immutable_class_is_one_of_the_most_fundamental_exact_number_classes.
__It_has_the_value_domain_from_0_to_some_maximum_value_determined
__by_the_machine_representation_provided.___All_arithmetic_on_values_of_this
__class_is_modular_in_the_field_zero_to_2^asize.__This_class_inherits_from
__AVAL{BIT}._The_number_of_bits_in_the_representation_is_identical_to
__NUM_BITS::Num_Bits.

___NOTE_The_Sather_language_requires_that_Num_Bits_be_at_least_32_to_ensure
________portability_of_INT_literals_up_to_this_size.

________No_operation_results_in_an_out_of_range_value_so_no_checking
___is_required.

___References_:
________Keith_O._Geddes,_Stephen_R._Czapor,_and_George_Labahn,_"Algorithms
________for_Computer_Algebra",_Kluwer_Academic_Publishers,_Boston,_1992.


Flattened version is here

Ancestors
$EXACT_FMT $FMT $STR $OPTION
$CARDINAL{_} $VALUE_ITERS{_} $LIMITED{_} $WHOLE_NUM{_}
$SIMPLE_NUM{_} $HASH $IS_EQ $SEQUENCERS{_}
$COUNTS{_} $ARITHMETIC{_} $ADD_OPS{_} $ZERO{_}
$NFE{_} $TEXT $BINARY $ORDERED{_}
$IS_LT{_} $VALUE{_} $NIL $IS_NIL
$CONVERSION{_}



Public


Constants

Features
abs : SAME
card : CARD
**** This routine returns a copy of self. Built-in to this implementation.
create(val : CARD) : SAME
create(val : FIELD) : SAME
create(val : QUADBITS) : SAME
**** This returns a field value from the given bit-pattern.
div(other : SAME) : SAME
field : SAME
**** This routine returns a copy of self. Built-in to this implementation.
int : INT
is_field(str : STR) : BOOL
****
__This_predicate_returns_true_if_and_only_if_str_represents_a_field_number.
is_lt(other : SAME) : BOOL
**** This predicate returns true if and only if self is less than other
___using_the_closed_field_arithmetic_relation_(ie_the_value_with_all_bits_set
___is_less_than_the_next_value_which_has_all_bits_clear!).
is_prime : BOOL
**** This predicate returns true if and only if self is a prime number.
log2 : SAME
minus(other : SAME) : SAME
mod(other : SAME) : SAME
next_exp2 : SAME
plus(other : SAME) : SAME
times(other : SAME) : SAME

Iters


Private


The Sather Home Page